WinC 2018 ## PROCEEDINGS Wayamba International Conference "Extending Frontiers Towards Sustainable Development Goals" Wayamba University of Sri Lanka Kuliyapitiya Sri Lanka 24 - 25 August 2018 Development of a somatic embryogenesis protocol for tea (Camellia Sinensisl.) O. Kuntze) from leaf calli ^{1,28}Sivapriyadharshini A, ¹Ranaweera KK, ¹Ranatunga MAB and ²Seran TH ¹Tea Research Institute of Sri Lanka, Talawakelle, Sri Lanka ²Department of Crop Science, Faculty of Agriculture, Eastern University, Sri Lanka *Corresponding author: aru priya3@yahoo.com Somatic embryogenesis is an efficient regeneration system with high genetic integrity which useful in tea crop improvement. The present study was conducted with the objective of developing a viable somatic embryogenic protocol from leaf calli of tea. Leaf segments of 3rd leaves of TRI 2043 and 2024 cultivars were used to induce calli and for induction of somatic embryos 2nd and 3rd sub cultures were selected. Calli were inoculated in MS media with (i) 2 mgl⁻¹ benzyl amino purine + 3 mgl⁻¹ naphthol acetic acid; and (ii) 2 mgl⁻¹ benzyl amino purine + 3.5 mgl⁻¹ naphthol acetic acid growth regulator combinations. The greatest amount of embryogenic callus proliferation in both cultivars was achieved from 3rd subcultures using 2 mgl-1 benzyl amino purine + 3.5 mgl⁻¹ naphthol acetic acid medium. Compact and friable callus was observed in all culture bottles 3 weeks after culturing and friable calli was reported as the best for somatic embryo induction. Somatic embryoids were observed in 2 mgl⁻¹ benzyl amino purine + 3 mgl⁻¹ naphthol acetic acid of TRI 2043. Significantly highest relative growth rate (92.21 %) was observed from leaf callus in 2 mgl⁻¹ benzyl amino purine + 3.5 mgl⁻¹ naphthol acetic acid is better to induce somatic embryos. Keywords: Leaf callus, Somatic embryogenesis, Somatic embryos