INFLUENCE OF CORN COB AND HUSK BIOCHAR ON

GROWTH AND YIELD OF MALABAR SPINACH

(Spinacia oleracea L.)

BY

T.D.S.M. MALKANTHI

8 NA

A RESEARCH REPORT SUBMITTED IN THE PARTIAL FULFILLMENT OF BBST (HONS.) IN AGRICULTURAL TECHNOLOGY AND ENTREPRENEURSHIP DEGREE AT THE FACULTY OF TECHNOLOGY, EASTERN UNIVERSITY,

FTC 28 Project Report Library - EUSL SRI LANKA

2021

APPROVED BY

Coordinator Biosystems Technology Faculty of Technology Eastern University Sri Lanka

Prof. Thayamini H. Seran Professor and Supervisor Department of Crop Science Faculty of Agriculture Eastern University Sri Lanka Date: 21:01.2022

Head,

Department of Biosystems Technology

Faculty of Technology

Eastern University

Sri Lanka Date: .15 /02 / 2022

ABSTRACT

The field experiment was conducted to study the influence of corn cob and husk biochar on the growth and yield of the Malabar spinach (*Spinacia oleracea* L.) during May to September 2021 at home garden, Welimada, Ambagasdowa in the Badulla district. The experiment was laid out in Randomized Complete Block Design with seven treatments and 6 replications. Treatment were 10 g compost (T1), 10 g compost and 10 g corn cob biochar (T2), 10 g compost and 20 g corn cob biochar (T3), 10 g compost and 30 g corn cob biochar (T4), 10 g compost and 10 g corn husk biochar (T5), 10 g compost and 20 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T6), 10 g compost and 30 g corn husk biochar (T7) as basal and after 4 weeks of seeding, 1 g of urea was added per plant according the recommendation of Department of Agriculture, Sri Lanka.

The results revealed that application of compost and 30 g corn husk biochar had significant differences (P<0.05) on plant height, number of leaves, root length, fresh weight of leaves, air dry weight of leaves, air dry weight of roots, fresh weight of whole plant, yield at 6th week after planting (at harvest time). Also, application of compost and 30 g corn cob significant difference (P<0.01) on number of leaves, leaves length on Malabar spinach. Application of different concentration of corn cob and husk biochar increased the growth and yield of Malabar spinach (*Spinacia oleracea* L.). Present study suggests that, among the all tested treatments, 30 g of corn husk and compost would be the best to obtain better growth and higher yield of Malabar spinach.

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMNTii
CHAPTER 011
INTRODUCTION1
CHAPTER 02
2.0 REVIEW OF LITERATURE
2.1. Malabar spinach (Spinacia oleracea L.)
2.1.1 Origin and history of spinach3
2.1.2. Climate and soil Requirement4
2.2. Morphology4
2.2.1. Basella alba L4
2.2.2. Basella alba L.var. Cordifolia (Lamk.) Almeida5
2.2.3. Taxonomic classification
2.3. Phytochemistry6
2.3.1 Compounds and anti-nutritional composition
2.4. Importance of <i>Basella alba</i> L8
2.4.1 Use as an indicator
2.4.2 Medicinal uses
2.4.3 Nutritional importance9
2.4.5 Use in pest management9
2.4.6 Use as a Vegetable Oil10
2.4.7 Use as a vegetable10
2.5 Corn cob and Husk biochar
2.5.1 Properties of Biochar
2.5.2 Specific surface area
2.5.3. Cation Exchange Capacity (CEC) and pH values
2.5.4 Biochar effect on growth and yield of crop15
CHAPTER 03
3.0 MATERIALS AND METHODS
3.1 Location
3.2 Climate
3.3 Variety used
3.4 Experiment
3.4.1 Experiment design

3.4.2 Treatment used in this experiment	19
3.5 Design of Biochar chamber	19
3.6 Preparation of biochar	21
3.6.1 Collection of raw materials	21
3.6.2 Preparation of corncob and husk biochar	21
3.7 Preparation of polybag	22
3.8 Agronomic practices	23
3.8.1 Field preparation	23
3.8.2 Seeding of Malabar spinach	23
3.9 Cultural practices	23
3.9.1 Irrigation	23
3.9.2 Weeding	23
3.9.3 Fertilizer application	23
3.10 Agronomic parameters	24
3.11 Data analysis	24
CHAPTER 04	25
4.0 RESULTS AND DISCUSSION	25
4.1 Plant height	25
4.2 Number of leaves	25
4.3 Leaf length	27
4.4 Leaf width	
4.5 Leaf stalk length	
4.6 Leaf colour	30
4.7 Leaf area	
4.8 Root length	31
4.9 Fresh weight of leaves	
4.10 Fresh weight of stem	33
4.11 Fresh weight of roots	
4.12 Air dry weight of leaves	34
4.13 Air dry weight of stem	35
4.14 Air dry weight of roots	35
4.15 Fresh weigh of the whole plant	
4.16 Yield	
CHAPTER 05	
5.0 CONCLUSION	
REFERENCES	41

LIST OF TABLES

Table 2.1: Compounds isolated from Basella alba L
Table 2.2: Inorganic composition of feedstock and Minerals contained in biochar
product (g kg ⁻¹) (MuHen, 2010)11
Table 2.3: properties of biochar as affect by feedstock and pyrolysis temperature
(Yang Ding, 2019)14
Table 4.1: Effect of corn cob and husk biochar on plant height of Malabar spinach at
different weeks
Table 4.2: Effect of corn cob and husk biochar on number of leaves per plant at
different weeks
Table 4.3: Effect of corn cob and husk biochar on leaf length of Malabar spinach at
different weeks
Table 4.4: Effect of corn cob and husk biochar on leaf area (cm^2) and root length of
Malabar spinach plant at harvest
Table 4.5: Effect of corn cob and husk biochar on fresh weight of leaves, stem and
root of Malabar spinach plant at harvest
Table 4.6: Effect of corn cob and husk biochar on air dry weight of leaves, stem and
root of Malabar spinach plant at harvest
Table 4.7: Effect of corn cob and husk biochar on fresh weight of plant and yield of
Malabar spinach at harvest

LIST OF FIGURES

Figure 3.1: Field layout of the experiment
Figure 3.2: Designed Biochar chamber19
Figure 3.3: Illustration of the Biochar chamber components
Figure 3.4: Corn cob and corn husk
Figure 3.5: Process of biochar preparation22
Figure 3.6: Labeled polybag22
Figure 4.1: Effect of corn cob and husk biochar on leaf width of Malabar spinach at
different weeks
Figure 4.2: Effect of corn cob and husk biochar on Leaf stalk length of Malabar
spinach at harvest