IDENTIFYING SUITABLE PRESERVATION TECHNIQUE FOR KING COCONUT WATER (*Cocos Nucifera Var. Aurantiaca*) USING NATURALLY AVAILABLE INGREDIENTS AND ITS QUALITY ASSESSMENT

BY

H.M. THARINDU MADUSHAN HERATH

Department of Bio Systems Technology Faculty of Technology Eastern University Sri Lanka 2021

ABSTRACT

It is evident that there is an increasing demand for natural beverages with preserved natural sensory properties. King coconut (*Cocos nucifera var. aurantiaca*) is the best and widely acceptable natural refreshing beverage because of its nutrient contents like, protein, fat, vitamin E, iron, calcium, phosphorus, potassium, sodium, sugar, and enzymes, etc., which are helping to maintain human health. Although, it is not as convenient to use for a longer period as its original form. Therefore, there is an opportunity to develop a ready to serve drink (RTS) to encourage consumers. Therefore, this study was conducted to develop an RTS beverage from King Coconut (KC) water by adding naturally available preservatives. For that, lime was added as a natural citric acid agent while clove was added to inhibit microbial growth (responsible for fermentation).

King coconut water, an age of eight to nine months, was collected and their Brix° value standardized to 9°. Lime juice (0.02 mL/100 mL) was added to KC water and pasteurize at 72 °C for 2.5 minutes as the initial step. Next, 0.08 g/100 mL of cloves and 0.02 mL / 100 mL of lime was added to KC water and pasteurized at 72 °C for 2.5 minutes. All the samples were refrigerated (4°C) and stored for 4 days. pH, total soluble solids (TSS), titratable acidity, and moisture content were measured at the beginning and after 4 days of storage. After four days of storage period the results showed that the pH, TSS, titratable acidity, moisture content, were 5.5, 9°, 0.06%, and 94%, respectively. The product was microbiologically (less than 50 CFU/mL) safe for consumption after 4 days of storage.

Sensory analysis was done in both steps 1 and 2 through untrained panelists to find consumers' preference of taste, colour, odour, appearance, overall acceptability of treated king coconut water. At step 1 highest acceptance for overall acceptability was acquired by the Su/KC+nL+P sample and in step 2 it goes to sample natural one without added anything SKC+nL+nCl+nP sample. Whereas it is not safe for consumption because of its microbial load. Even though the pasteurized king coconut water with additives is safe to consume, it showed the least acceptability for colour, odour, and appearance due to the colour change from opaque white to light brown (GREYED-ORANGE GROUP 177-C

i

Greyish Reddish Orange) after adding the clove. The minimum level of acceptance for the odour and taste may be due to the astringent flavor created by the clove. Although it obtained the least preference for the said sensory attributes, it exhibits the same level of preference with the commercially available soft drink and is microbiologically safe to use. Therefore, when considering the overall acceptability of the (KCS+L+Cl+P) it is possible to develop it as a ready-to-serve drink with required adjustments.

TABLES OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEM	ENTiii
TABLE OF CONTEN	NTSiv
LIST OF TABLES	vii
LIST OF PLATES	viii
LIST IF FUGUERS	ix
ABBREVIATION	
CHAPTER 01	
1.0 INTRODUCTIO	DN 01
1.1 Problem	statement03
CHAPTER 02	
2.0 LITERATURE	REVIEW
2.1 King coc	
2.1.1	Variety of king coconut04
2.1.2	King coconut composition and nutritional quality06
2.1.3	Medical values of king coconut
2.1.4	King coconut production08
2.1.5	King coconut maturity determination09
2.2 Beverage	e industry in local and global market09
2.2.1	King coconut market value as a beverage10
2.3 Extendin	g the shelf life of king coconut10
2.4 Coconut	water preservation methods12
2.4.1	About preservatives
2.4.2	Standard for preservatives
2.4.3	Citric acid13
	2.4.3.1 Natural source of citric acid14
2.4.4	Antimicrobial effect14
2.4.5	Pasteurization methods15
CHAPTER 03	

3.0 MATE	RIALS A	AND METHODS	16
3.1	Locatior	1	16
3.2	Collectio	on and preparation of sample	16
3.3	Chemica	Is and equipment's	17
3.4	Steriliza	tion	18
3.5	Ready to	serve (RTS) drink preparation	18
3.6	Chemica	al qualities of treated king coconut water	21
	3.6.1	Determination of pH	
	3.6.2	Determination the Brix ⁰ value	21
		3.6.2.1 The procedure for taking the $Brix^0$ value	21
	3.6.3	Determination of moisture content	
		3.6.3.1 Principle	22
		3.6.3.2 Procedure	22
		3.6.3.3 Calculation	22
	3.6.4	Titratable acidity	23
		3.6.4.1 Principle	23
		3.6.4.2 Procedure	23
3.7	Sensory	evaluation	23
	3.7.1	Cording and serving samples	24
3.8	Microbi	al analysis	25
	3.8.1	Culture media preparation	25
	3.8.2	Laminar flow cabinet	25
	3.8.3	Method	25
3.9	Statistic	al analysis	
CHAPTER	8.04		27
4.0 RESUI	LTS ANI	DISCUSSION	27
4.1	Characte	eristics of raw materials	27
	4.1.1	Chemical characteristics of raw materials	27
	4.1.2	Total plate count	
4.2	Characte	eristics of step 1 treated samples	
	4.2.1	Chemical characteristics of treated samples	29

4.2.2	Total plate count	30
4.2.3	Sensory evaluation (step 1)	31
	4.2.3.1 Colour	31
	4.2.3.2 Taste	32
	4.2.3.3 Odour	33
	4.2.3.4 Appearance	34
	4.2.3.5 Overall acceptability	34
4.3 Characte	eristics of step 2 treated samples	35
4.3.1	Chemical characteristics of step 2 treated samples	35
4.3.2	Total plate count of treated samples in step 2	36
4.3.3	Sensory evaluation treated samples in step 2	37
	4.3.3.1 Colour	37
	4.3.3.2 Odour	37
	4.3.3.3 Taste	38
	4.3.3.4 Appearance	39
	4.3.3.5 Overall acceptability	39
CONCLUSION		41
SUGGESTIONS FO	R FUTURE RESEARCH	42
REFERENCES		43
APPENDIX		47

LIST OF TABLES

Table 2.1 Varieties and forms found in Sri Lanka	05
Table 2.2 Chemical composition of King coconut	07
Table 2.3 Composition of Coconut water according to the age	07
Table 3.1 Equipment's, glassware's, ingredients and chemicals used	17
Table 3.2 Treatment modalities	19
Table 3.3 List of treatment with their codes	24
Table 4.1 Quality characteristics of fresh king coconut water and lime	28
Table 4.2 Chemical characteristics & Total plate count of treated samples in step 1	30
Table 4.3 Chemical characteristics & Total plate count of treated samples in step 2	36

LIST OF PLATES

Plate 2.1 Variety of king coconut	05
Plate 3.1 Pasteurization	19
Plate 3.2 Moisture determination oven dry method	22
Plate 4.1 Microbial growth in sugar and lime added raw samples	29
Plate 4.2 Microbial precent in treatments in step 1	31

LIST OF FIGUERS

Figure 3.1 Process flow chart step 1	20
Figure 3.2 Process flow chart step 2	20
Figure 4.1 Acceptability level in % for colour in step 1	32
Figure 4.2 Acceptability level for taste in step 1	33
Figure 4.3 Acceptability level for odour in step 1	33
Figure 4.4 Acceptability level for appearance in step 1	34
Figure 4.5 Acceptability level overall acceptability in step 1	35
Figure 4.6 Acceptability level in % for colour in step 2	37
Figure 4.7 Acceptability level for odour in step 2	38
Figure 4.8 Acceptability level for taste in step 2	38
Figure 4.9 Acceptability level for appearance in step 2	39
Figure 4.10 Acceptability level for overall acceptability in step	40