Development and evaluation of quality of Biscuit made up with Gram flour, Wheat flour and Centella asiatica

D.N.K. Dasanayaka

Faculty of Technology

Eastern University, Sri Lanka
2021

ABSTRACT

The study was carried out to improve the utilization of gram flour and *Centella asiatica* through the development of value added products such as gram flour, wheat flour and *Centella asiatica* composite biscuits. Gram flour and wheat flour were supplied from the market as a processed flour. *Centella asiatica* were obtain from the home garden and it was wash well to remove impurities. Then it was dried under the sun light for several days, grind as a powder and sieved well to produce *Centella asiatica* powder. Then the *Centella asiactica* powder were packed in air tight polythene bag and stored under the refrigerated conditions until further use. The wheat flour, gram flour and *Centella asiatica* composite biscuit was prepared according to the standard procedure at the faculty of technology Eastern University Sri Lanka.

There were six treatments of biscuits prepared with different combinations of wheat flour, gram flour and *Centella asiatica* powder. T1 – wheat flour 100g, T2 – wheat flour 80g, gram flour 10g, *Centella asiatica* powder 10g, T3 – wheat flour 70g, gram flour 20g, *Centella asiatica* powder 10g, T4 – wheat flour 60g, gram flour 30g, *Centella asiatica* powder 10g, T5 – wheat flour 50g, gram flour 40g, *Centella asiatica* powder 10g, T6 – wheat flour 40g, gram flour 50g, Centella asiatica powder 10g. physical (diameter, thickness and spread ratio), chemical (moisture, ash, fat and protein contents) and sensory evaluation were done for each treatment of the biscuits.

The physical parameters of biscuits such as diameter and thickness were decreased gradually from 46.78 - 44.71mm and 11.20 - 8.6mm and spread ratio was increased gradually for each treatment from 6.96 - 10.57 respectively. The moisture, ash, fat and protein content increased from 1.44 - 2.47, 2.14 - 4.22, 9.30 - 13.18 and 6.96 - 10.57 respectively. Sensory evaluation was done by using 25 members of panel. That data was described by graphically. According to the sensory data, taste, color, texture, aroma, and overall acceptability were checked. Most people liked the color of treatment 4 (T4) the most, 19%. The color of those treatments was better than other samples. Treatment 4 (T4) and treatment 3 (T3) had the highest responses to the aroma among all the treatments, at about 20% and 18%, respectively. Most of the people liked the taste of T4 treatment; it was 19%. Not only that, but T1 treatment received an 18% response for taste. Texture is another important factor, which

includes sensory analysis. Treatment 4 (T4) texture was the best and received the most responses out of all the samples. It was 21%. According to the sensory data evaluation, T1 (treatment 1) also had 20% of responses among other treatments. Finally, overall acceptability was analyzed and got the 20% highest responses for treatment 4 (T4). Treatment 1 (T1) and treatment 3 (T3) got 18% and 17% responses, respectively. All the evaluations were conducted on the fresh samples only.

Based on the quality characteristics of wheat flour, gram flour and *Centella asiatica* composite biscuit the 30g of gram flour (T4) contained biscuit has the good score in organoleptic points of view and acceptable nutritional quality compared to other combinations.

CONTENT

ABSTRACT	iii
ACKNOWLEDGEMENT	iii
CONTENT	V
LIST OF TABLES	viii
LIST OF FIGURES	ix
CHAPTER 1 INTRODUCTION	1
1.1 Gram flour	1
1.2 Centella asiatica	2
1.3 Wheat flour	2
1.4 Nutritionally important Biscuit	3
CHAPTER 2 LITERATURE REVIEW	4
2.1 Biscuits	4
2.2 Contribution of biscuit to human health	5
2.3 Biscuit production	6
2.4 Ingredients of biscuit manufacture	6
2.5 Introduction to gram flour	8
2.5.1 Benefits of the Gram flour	8
2.5.2 Gram flour production	9
2.5.3 Nutritional composition of gram flour	10
2.6 Centella asiatica	10
2.6.1 Scientific classification	11
2.6.2 Centella asiatica as a food source	11
2.6.3 Nutritional value	12
2.6.4 Benefits of Centella asiatica	12
2.7 Wheat flour	13
2.7.1 Functions of wheat flour	13
2.7.2 Benefits of wheat flour	14
2.7.3 Nutritional composition of wheat flour	15
CHAPTER 3 MATERIALS AND METHODS	16
3.1 Materials used for this study	16

3.2 Procurement of materials	16
3.3 Preparation of Centella asiatica powder	17
3.4 Development of biscuits (standard method)	17
3.5 Biscuit preparation procedure	19
3.6 Preparation of dough	20
3.7 Sensory analysis of wheat flour, Gram flour and <i>Centella asiatica</i> conbiscuits	-
3.7.1 Materials used for the sensory evaluation	20
3.7.2 Instruction for the panelists	21
3.7.3 Presentation of sample	21
3.8 Physical analysis of the biscuits	22
3.8.1 Diameter	22
3.8.2 Thickness	22
3.8.3 Spread Ratio	22
3.9 Chemical analysis of the biscuits	22
3.9.1 Determination of moisture content (Gravimetric method)	22
3.9.2 Determination of ash content	23
3.9.3 Determination of protein content (Kjeldhal digestion method)	24
3.9.4 Determination of fat content	26
3.10 Package and storage	27
3.11 Statistical analysis	27
CHAPTER 4 RESULT AND DISCUSSION	28
4.1 Physical analysis of wheat flour, gram flour and <i>Centella asiatica</i> conbiscuit	
4.1.1 Diameter	28
4.1.2 Thickness	28
4.1.3 Spread Ratio	29
4.2 Nutritional Analysis of Freshly Made wheat flour, gram flour and <i>Ceasiatica</i> composite Biscuits	
4.2.1 Moisture content	30
4.2.2 Ash content	32
4.2.3 Fat content	33
4.2.4 Protein content	34
4.3 Organoleptic Qualities Analysis of freshly made biscuits	35
4.3.1 Color	35
137 Aroma	36

SUGGESTIONS FOR FUTURE RESEARCH WORK	
CHAPTER 05 CONCLUSION	40
4.3.5 Overall acceptability	38
4.3.4 Texture	37

LIST OF TABLES

	Page number
Table 2.1: Nutritional value of <i>Centella asiactica</i>	12
Table 3.1: Experimental design	18
Table 4.1: Physical parameters of the wheat flour, gram flour	29
Centella asiatica composite biscuits	
Table 4.2: Chemical parameters of the composite biscuit	30

LIST OF FIGURES

Figure 3.1:	flow chart of the preparation of Centella asiatica powder	17
Figure 3.2:	flow chart for the preparation procedure of the biscuit	19
Figure 3.3:	prepared biscuit samples	20
Figure 3.4:	sensory evaluation of the biscuits	21
Figure 3.5:	measuring the moisture content of the biscuits	23
Figure 3.6:	fat analysis by soxhlet extraction method	27
Figure 4.1:	moisture content for each treatment	31
Figure 4.2:	ash content for each treatment	32
Figure 4.3:	fat content for each treatment	33
Figure 4.4:	protein content for each treatment	34
Figure 4.5:	color of the sample after the sensory data collection	35
Figure 4.6:	aroma of the sample after the sensory data collection	36
Figure 4.7:	taste of the sample after the sensory data collection	37
Figure 4.8:	texture of the sample after the sensory data collection	38
Figure 4.9:	overall acceptability of the sample	38