STUDY ON USING LOW COST HOMEMADE NODE MCU SOIL MOISTURE SENSOR IN MONITORING SOIL MOISTURE CONTENT

BY

M. LASHIKA LAKMALI

DEPARTMENT OF BIOSYSTEMS TECHNOLOGY

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY, SRI LANKA

2021

ABSTRACT

A study was conducted to develop a soil moisture sensor interface with Node MCU ESP8266 micro-controller and to assess its efficiency in various land uses over oven dry methods. The developed soil moisture sensor had improved features, including a Wi-Fi internet module and low production cost than the other microcontroller Node MCU ESP8266 sensors. Therefore, it can be introduced to the low-scale farmers to attend the real-world problem in the field. Storing all moisture data in the SD card RIC module in real-time is another sensor advantage. Further, the sensor can measure soil moisture content at different types of vegetative land or soil conditions.

Field applications to test the efficiency of the buildup sensor was carried out in 05 different types of land uses, namely, escape land, paddy land, orchard land, natural vegetation land and water source land. The efficiency of the sensor was compared with the oven dry measurements, soil temperature and pH.

Paired t-test and paired sample correlation test were carried out to examine the significant difference between oven dry and sensor soil moisture measurements. The statistical results revealed that the oven dry and sensor methods showed significant differences in soil moisture content in paddy land and water source land. In contrast, soil moisture content showed non-significant differences in escape, orchard and natural vegetation land at 5% significant level. The correlation between paired samples showed positive significance in escape, orchard and natural vegetation land uses showed a non-significant correlation (p<0.05). Model comparisons were conducted to examine the efficiency of soil moisture sensors over the oven dry method. Among tested models, the sensor used in escape, orchard and natural vegetation lands showed a strong positive correlation with the oven dry

Ι

measurements ($r^2 = 0.76$, 0.83 and 0.65), respectively. However, the sensor used in paddy land and water source lands did not correlate with oven dry measurements.

Pearson correlation among variables resulted in a moderate negative correlation between soil moisture content by oven dry and sensor methods and soil temperature and moderate positive correlation between soil moisture content by oven dry and sensor methods and pH at a non-significant level (p<0.05 & p<0.01). Thus, the different methods of soil moisture measurements do not influence the soil parameters such as temperature and pH.

The study revealed that the Node MCU soil moisture sensor is more effective in orchard land (83%) and escape (76%) land and moderately effective in natural vegetation land (65%) to replace the oven dry measurements. The sensor is also suitable for measuring the readily available soil water to ensure irrigation efficiency in the field.

Since the direct gravimetric measurement of free-soil moisture requires removing, drying, and weighing a sample, soil moisture sensors measure the volumetric water content indirectly by using some other soil property, such as electrical resistance and dielectric constant or interaction with neutrons as a proxy for the moisture content. Thus, developing low-cost soil moisture sensors will create room for the low-scale farm to adopt modern agricultural techniques.

Π

TABLE OF CONTENTS

ABS	ГКАСТ	I	
ACK	NOWLEDGEMENT	III	
TAB	LE OF CONTENT	IV	
LIST	OF TABLES	VIII	
LIST	OF FIGURES	IX	
LIST	LIST OF PLATESX		
LIST	OF ABBREVIATIONS	XI	
CHA	APTER 01	01	
INTF	RODUCTION	01	
1.1	Background of the study	01	
1.2	Research Problem and Justification	03	
1.3	Research objectives	03	
CHA	APTER 02	04	
LITE	RATURE REVIEW	04	
2.1 So	oil moisture	04	
2.1	.1 Type of soil water	04	
2.1	.2 Soil types and soil water content	09	
2.1	.3 The effect of soil moisture on plant	10	
2.2 So	oil moisture estimation	12	
2.2	.1 Point measurement technique used for soil moisture estimation	13	
2.2	.2 Soil moisture estimation using remote sensing method	19	
2.3 In	stallation of soil moisture sensor	20	
2.4 So	oil moisture sensor calibration	22	
CHA	APTER 03	23	
MAT	ERIALS AND METHOD	23	
3.1 M	laterials	23	
3.1	.1 Material used to build up Node MCU ESP 8266 soil moisture sensor	23	

3.1.2 Material used for oven-dry method	23
3.1.3 Material used to determine soil properties	23
3.2 Development of Node MCU soil moisture sensor	24
3.2.1 Node MCU ESP 8266 module	24
3.2.2 Soil moisture sensor	25
3.2.3 I2C module	26
3.2.4 Real time clock	26
3.2.5 SD card module	26
3.2.6 Procedure of the build - up of soil moisture sensor interface with Node	
MCU8266 with Arduino IDE	29
3.3 Field sampling locations	31
3.4 Physical environment of sampling locations	31
3.4.1 Climate	31
3.5 Field measurement of soil moisture content (SMC)	33
3.5.1 Node MCU soil moisture sensor measurement of soil moisture field	33
3.5.2 Oven-dry method	33
3.6 Measurement of soil temperature, pH, soil color and texture	34
3.7 Statically analysis	36
, r	1973
CHAPTER 04	37
RESULTS AND DISCUSSION	
4.1 Development of Node MCU ESP 8266 soil moisture sensor	37
4.1.1 Working of the interface of Node MCU soil moisture sensor	37
4.1.2 Programming Node MCU ESP 8266 board from Arduino IDE	38
4.2 Field sampling measurements	40
4.3 Comparison between oven dry method and Node MCU soil moisture sensor	
method	45
4.4 Model comparison between oven dry moisture measurement and soil moistur	e
measurement	49
4.5 Efficiency of soil moisture measurement methods on soil temperature	51

CHAPTER 05	53
CONCLUSIONS	53
SUGGESTIONS AND RECOMMENDATIONS	56
REFERENCES	57
APPENDICES	68

LIST OF TABLES

2.1 Variation in soil water tension for different of soil
2.2 Effective rooting depth for soil moisture sensor installation
3.1 Specification of the soil sensor FC-2825
3.2 Pins function for the memory card used in connected microcontroller
3.3 Describe of the sampling location
4.1 Summary of the measurements obtained from the field41
4.2 Descriptive table of oven dry soil moisture and sensor soil moisture
4.3 Paired t- test between oven – dry sensor method
4.4 Paired sample correlation between oven dry- sensor method

LIST OF FIGURES

2.1 Water levels on soil water content04
2.2 Capillary water in soil particles
2.3 Soil matric potential relation to volumetric water content in different soils09
2.4 TDR unit15
2.5 FDR sensor16
2.6 Soil water tensiometer17
3.1 Node MCU ESP 8266 module
3.2 Soil moisture sensor24
3.3 I2C module
3.4 Real- time clock
3.5 SD card model26
3.6 Flow diagram of the research approach
3.7 Illustration of component connection design
3.8 Average rainfall in Homagama DSD 202131
3.9 Modified texture triangle for determine soil texture by feel
4.1 Structure of build up Node MCU interface soil moisture sensor40
4.2 Soil moisture measurement on oven-dry and soil moisture sensor
4.3 Regression models of average oven-dry moisture measurement and average soil
moisture sensor measurements
4.4 Average soil temperature measurement (°C) at sampling sites
4.5 Average pH measurement at sampling sites

LIST OF PLATES

3.1 Soil moisture sensor interface with Node MCU ESP8266
3.2 SMC measurement using soil sensor
3.3 Measure weight of soil sample
3.4 Analyzed the soil color using Munsell colour chart
3.5 Soil texture analyzed by feel method
4.1 Display soil moisture in 16×2 Arduino display