PLANT BASED STABILIZERS INSTEAD OF GELATIN IN

YOGHURT PRODUCTION

M.N.LAKMALI

DEPARTMENT OF BIO SYSTEMS TECHNOLOGY

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

2021

ABSTRACT

A research was conducted at the Department of Bio System Technology, Faculty of Technology, Eastern University, Sri Lanka to produce yoghurt with different plant based stabilizers such as kithul flour and agar instead of gelatin and to investigate physical, chemical and sensory parameters.

In my research, there was five treatments of yoghurt prepared to incorporate different levels of above mentioned Gelatin substitutes 6 gl⁻¹. The other ingredients were used in similar proportion in all treatments. The five treatment in this study were T1 –Yoghurt with Gelatin stabilizer (Control), T2- yoghurt with 10% kithul flour extract, T3- yoghurt with 30% kithul flour extract, T4- yoghurt with 10% agar extract, T5- yoghurt with 30% agar extract yoghurt.

The experiment was laid out with a completely randomized design with two replications. All five treatment of freshly prepared yogurts were analyzed for nutritional quality and organoleptic qualities. The nutritional qualities such as pH, Total Suspended Solid, Ash, Fat, Protein, Syneresis and tritratable acidity were analyzed according to AOAC (2002) method.

The nutritional qualities pH, Ash, Fat, Titratable Acidity, Protein, Total Suspended Solid and syneresis were significant differences (P>0.05) among the treatments. Based on the above result all treatment were kept for storage in a refrigerator for 21 days. There was a slight decrease in pH but slight increase in protein, titratable acidity, fat, ash, syneresis and total suspended solid. The Result of the organoleptic characteristics revealed that treatment T1- Yoghurt with gelatin stabilizer (Control) had the highest mean score of overall quality of all sensorial properties namely, color, taste, aroma, and overall acceptability and the treatment with T5- 30% Agar extract had the next best level after 21 days of storage in a refrigerator.

Based on these results during the storage study the T5 treatment with 30% agar extract was selected as the best treatment. Thus it can be concluded that Plant based stabilizer of 30% agar can be used to replace gelatin in yoghurt preparation completely.

TABLE OF CONTENT

page no:

Contonto
Contents

ACKNOWLEDGEMENT.	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF THE TABLES	vi
LIST OF FIGURE	vii
ABBREVIATION	viii
CHAPTER 1	1
INTRODUCTION	1
OBJECTIVES:	
CHAPTER 02	4
2.0 Literature Review	4
2.1 Milk	
2.2 Yoghurt	
2.3 Stabilizer	
CHAPTER 03	
3.0 Materials and Methods	
3.1 Location and Study Area	
3.2 Collection of Milk	
3.3 Mother Culture Preparation	
3.4Collection of Stabilizers for Yoghurt Preparation	
3.4.1 Incorporation of Stabilizers	
3.5 Treatment Plan	
3.6. Preparation of yogurt	
3.7 Analysis of yoghurt	
3.7.1 Determination of ash content	
3.7.2 Determination of fat content	
3.7.3 Determination of titratable acidity of yoghurt	
3.7.4 Determination of PH	
3.7.5Determination of Total nitrogen	
3.7.6 Syneresis	
3.7.7. Total Suspended Solid	

3.8 Sensory analysis
3.9 Statistical analysis
CHAPTER 04
4.0 Result and Discussion
4.1 Chemical Composition of fresh cow milk
4.2 Syneresis of yoghurt
Table 4.1 changers of syneresis at day one 31
4.3 Changes in compositions of yoghurt during storage period
4.3.1 Ash content in yoghurt during the storage period
Table 4.2: Changes of ash content in yoghurt during storage 32
4.3.2Fat content in yoghurt during storage period
4.3.3 The pH and titratable acidity in yoghurt during storage
Table 4.4 Changes Of pH and tiratable acidity in yoghurt during storage35
4.3.4 Total Suspended Solid in yoghurt during the storage period 36
4.3.5 Protein content in yoghurt during the storage period
Table 4.6 Protein content in yoghurt during storage period
4.4 Effect of storage on sensory attributes of differently treated yoghurt samples
4.5 Organoleptic evaluation of produced yoghurt
4.5.1 Changes in Sensory attributes after one week
4.5.2 Changes in Sensory attributes after 21 days
Chapter 05
5.0 Conclusion
REFERENCE
APPENDICES

LIST OF THE TABLES

	Page no:
Table 4.1 changers of syneresis at day one	31
Table 4.2: Changes of ash content in yogurt during storage	32
Table 4.3 Changes of fat content in yoghurt during storage	33
Table 4.4 Changes Of pH and tiratable acidity in yoghurt during storage	35
Table 4.5 Total Suspended Solid in yoghurt during the storage period	37
Table 4.6 Protein content in voghurt during storage period	38

LIST OF FIGURE

Figure 1.1: Yoghurt Preparation Process	25
Figure 1.2: Variation in sensory attributes at one week	40
Figure 1.3: Variation in sensory attributes at after 21 days	41