EFFECT OF DIFFERENT EDIBLE OIL COATING ON THE QUALITY AND SHELF LIFE OF CHICKEN EGGS.

BY

HISANITHY PARASURAMAN

DEPARTMENT OF BIOSYSTEMS TECHNOLOGY FACULTY OF TECHNOLOGY EASTERN UNIVERSITY

SRI LANKA

2021

ABSTRACT

Edible oil coating is a cost effective and inexpensive method used in chicken eggs in order to preserve the internal, external, nutritional and sensory qualities and also extend the self-life of eggs during the storage at room temperature. The research study was conducted to investigate the effect of different edible oil coating on the quality and shelf life of chicken eggs. Freshly laid, undamaged and cleaned eggs were allowed to oil coating into different edible oils such as sunflower oil, coconut oil, palm oil and gingelly oil and stored at 30°C (room temperature).

The quality parameters such as weight loss, shell weight, air cell height, albumin weight, albumin height, albumin pH, yolk weight, yolk height, yolk diameter, yolk index and Haugh unit and also the nutritional qualities such as moisture, protein, fat and ash and also the sensory analysis was tested at the weekly interval. After 5 weeks of storage the sensory analysis was evaluated by using seven-point hedonic test. The edible oil coated eggs were subjected to statistical analysis by using ANOVA in SPSS statistical software to evaluate at 5% significant level.

The result indicated that the weight loss of edible oil coted eggs has less than the uncoated eggs and the palm oil coated eggs stored at room temperature showed more effective result in reducing weight loss. During the 5 weeks of storage, egg coated with palm oil were showed better result in the retention of albumin weight, albumin height, albumin pH, yolk weight, yolk height, yolk diameter, yolk index and Haugh unit than the noncoated eggs. But the other oil coatings also maintained the quality of eggs but in the overall observation the palm oil was the best treatment among the other

treatments. The internal, external, nutritional qualities were analyzed by using Duncan Multiple Range Test.

Significantly changes (p < 0.05) in nutritional qualities were observed between the treatments. The sensory analysis also showed that there were significant (p < 0.05) difference in the sensory characteristics such as Color, flavor, taste, texture and overall acceptability. According to Turkey's Standardized Range Test, the best and highest overall acceptability was observed in palm oil coated eggs. The palm oil coated eggs were stored at room temperature was selected as a best treatment which can be kept the eggs for 35 days without spoiled the internal, external, nutritional and sensory qualities and also significantly (p<0.05) differed from other treatment.

According to the result, this study was revealed the potential benefits of edible oils as a coating for eggs in order to satisfy the consumer and market demand and also the edible oil coating can be preserved the qualities of eggs during storage without the need of refrigeration. And also, this edible oil coating is most useable method for the rural and poor people to extent their usage duration of eggs.

ii

TABLE OF CONTENT

ABSTRACTi
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTiv
LIST OF TABLES
LIST OF FIGURESix
LIST OF PLATESx
ABBREVIATIONSxi
CHAPTER: 01
1.0 INTRODUCTION1
CHAPTER: 02
2.0 LITERATURE REVIEW
2.1. Egg
2.2. Structure of egg
2.2.1. Egg shell
2.2.2. Shell membrane
2.2.3. Albumin
2.2.4. Yolk
2.2.5. Air cell
2.3. Nutritional composition of an egg
2.3.1. Protein
2.3.2. Lipid9
2.3.3. Carbohydrate
2.3.4. Vitamins
2.3.5. Minerals
2.4. Egg quality10
2.4.1. Egg shell quality10
2.4.2. Egg yolk quality10
2.4.3. Egg albumin quality11
2.5. Measures of an egg quality11
2.5.1. Egg weight loss
2.5.2. Haugh Unit (HU)12
2.5.3 Yolk index12
2.5.4. pH of egg

2.6 Factors affecting egg quality	13
2.6.1. Storage condition	13
2.6.2. Temperature	14
2.6.3. Humidity	14
2.6.4. Physiological status	14
2.7 Preservation of shell eggs	15
2.7.1. Importance of shell eggs preservation	15
2.7.2. Methods of shell eggs preservation	15
2.7.2.1. Wet immersion method	15
2.7.2.1.1. Lime sealing method	15
2.7.2.1.2 Water glass method	15
2.7.2.2 Cold storage	16
2.7.2.3. Gaseous atmosphere	16
2.7.2.4. Pasteurization	16
2.7.2.5. The use of edible coating in eggs	16
2.7.2.5.1. Polysaccharide coatings	.17
2.7.2.5.2. Protein coatings	.17
2.7.2.5.3. Bio active coatings	.18
2.7.2.5.4. Lipid coatings	.19
2.7.2.5.4.1. Oil coatings	.20
2.8. Sensory evaluation	.21
2.8.1. Importance of sensory analysis	.21
2.8.2. Hedonic scale	.21
2.8.3. Qualities assed by sensory evaluation	.21
CHAPTER: 03	.22
3.0. METHODOLOGY	.22
3.1. Materials	.22
3.1.1 Materials used for the study	.22
3.1.2. Materials collection	.22
3.2. Sample size	.23
3.3. Experimental design	.23
3.4. Edible oil coating treatment and storage	.23
3.5. Development of Egg shell cracker	.24
3.5.1. Materials	.24

3.5.2. Procedure	24
3.6. Determination of Internal and External quality	25
3.6.1. External quality parameters	25
3.6.1.1. Egg weight loss	25
3.6.1.2. Egg shell weight	26
3.6.1.3. Air cell height	26
3.6.2. Egg internal quality parameters	26
3.6.2.1. Height of yolk	27
3.6.2.2. Diameter of yolk	27
3.6.2.3. Height of albumen	27
3.6.2.4. Weight of egg yolk	
3.6.2.5. Weight of egg albumen	
3.6.2.6. Albumin pH	29
3.6.2.7. Yolk Index	29
3.6.2.8. Haugh Unit	29
3.7. Nutritional analysis	29
3.7.1. Determination of Moisture	
3.7.2. Determination of Protein	31
3.7.3. Determination of Fat	33
3.7.4. Determination of Ash	34
3.8. Sensory Analysis	35
3.8.1. Materials used for the Organoleptic analysis	
3.8.2. Coding and serving the sample	
3.9. Shelf-life evaluation	
3.10. Statistical analysis	
CHAPTER: 04	
4.0 RESULT AND DISCUSSION	
4.1. Edible oil coating on chicken eggs	
4.2. Effects of different edible oil coatings on the external qualities of eg	ggs39
4.2.1. Weight loss of different edible oil coated eggs	
4.2.2. Egg shell weight	40
4.2.3. Air cell Height	41
4.3. Egg internal quality parameters	42
4.3.1. Egg albumin weight	42

4.3.2. Albumen Height	43
4.3.3. Albumin pH	44
4.3.4. Yolk weight	45
4.3.5. Yolk Diameter	46
4.3.6. Yolk Height	47
4.3.7. Yolk Index	49
4.3.8. Haugh Unit	
4.4. Nutrient analysis	
4.4.1. Moisture	
4.4.2. Protein	54
4.4.3. Fat	55
4.4.4. Ash	56
4.5. Shelf-life evaluation	57
4.6. Sensory Analysis of edible oil coated eggs	58
4.6.1. Colour	59
4.6.2. Taste	59
4.6.3. Flavour	60
4.6.4. Texture	60
4.6.5. Overall Acceptability	60
CHAPTER: 05	61
CONCLUSIONS	61
5.0 SUGGESTIONS FOR THE FURTHER RESEARCH WORK	63
CHAPTER:06	64
6.0 REFERENCE	64
APPENDIX	

LIST OF TABLES

Table 4. 1: Effect of edible oil coating on the weight loss
Table 4. 2: Changes in the egg shell weight of edible oil coated eggs. 40
Table 4. 3: Changes in the albumin weight of edible oil coated eggs
Table 4. 4: Changes in the albumin height of edible oil coated eggs
Table 4. 5: Changes in the albumin pH of edible oil coated eggs
Table 4. 6: Changes in the Yolk weight of edible oil coated eggs
Table 4. 7: Effect of edible oil coating on the Yolk Index
Table 4. 8: Effect of edible oil coating on the Haugh Unit. 51
Table 4. 9: Effect of edible oil coating on the Protein content of eggs
Table 4. 10: Effect of edible oil coating on the Fat content of eggs. 56
Table 4. 11: Effect of edible oil coating on the Ash content of eggs. 57
Table 4. 12: Effect of edible oil coating on the sensory analysis of eggs. 59

LIST OF FIGURES

Figure 2. 1. Basic nutrition in edible parts of egg (a) Egg albumin (b) Egg yolk
(Godbert, 2019)
Figure 3. 1. Flow chart for the procedure of edible oil coating on chicken eggs23
Figure 4. 1: Changes in the Air cell height of edible oil coated eggs41
Figure 4. 2: Effect of edible oil coating on the yolk diameter
Figure 4. 3: Effect of edible oil coating on the yolk height
Figure 4. 4: Effect of edible oil coating on the Moisture content of eggs

LIST OF PLATES

Plate 2. 1. Structure of chicken egg (Adegbenjo <i>et al.</i> , 2020)
Plate 2. 2. Physiochemical changes associated with storage of egg (a) Air cell, (b)
modifications during storage (Godbert, 2019)
Plate 3. 1. Different edible oil coatings on eggs
Plate 3. 2. Egg shell cracker
Plate 3. 3. Egg weight measured by using electronic scale
Plate 3. 4. Egg shell weight measured by using electronic scale
Plate 3. 5. Air cell height measured by using Vernier calliper
Plate 3. 6. Yolk height measured by using Vernier calliper
Plate 3. 7. Yolk diameter measured by using Vernier calliper
Plate 3. 8. Albumen height measured by using Vernier calliper
Plate 3. 9. Yolk weight measured by using electronic scale
Plate 3. 10. Albumen weight measured by using electronic scale
Plate 3. 11. Oven dried egg samples for determination of moisture content
Plate 3. 12. Digestion, Distillation, Titration for determination of Protein
Plate 3. 13. Determination of fat content for egg samples by using Soxhlet
Plate 3. 14. Ash content in each treatment's egg samples
Plate 3. 15. Arrangement of boiled eggs for Sensory analysis
Plate 4. 1. Internal quality of different edible oil coated eggs during 5 weeks of
storage