MANAGEMENT PRACTICES TO RECLAIM SALT AFFECTED SOILS :- A REVIEW

BY T.R. MUNASINGHA

DEPARTMENT OF BIOSYSTEM TECHNOLOGY FACULTY OF TECHNOLOGY EASTERN UNIVERSITY SRILANKA

ABSTRACT

The salt content of the soil is known as soil salinity, and the process of increasing the salt content is known as salinization. Salts are found naturally in soils and water. Natural processes such as mineral weathering or the gradual withdrawal of an ocean both can cause salination. It can also occur as a result of man-made processes such as irrigation and road salt. are a naturally occurring component in soils and water. Na+, K⁺, Ca²⁺, Mg²⁺, and Cl are the ions responsible for salination. these salts are flushed or leached out of the soil by drainage water in areas with adequate precipitation. Salts are deposited by dust and precipitation in addition to mineral weathering. Salts can build up in dry areas, resulting in naturally saline soils. The addition of salts to irrigation water can increase the salinity of soils. Irrigation management that provides adequate drainage water to leach added salts from the soil can help to prevent salt accumulation. Soil salinization has a negative impact on plant development and contributes to land degradation. Saline earth reduces agricultural productivity, worsens farmer well-being, and worsens the region's economic situation. Early management of soil salinity aids in its reversal. However, due to the negative effect of salinity on soil properties, heavy contamination results in the complete loss of farmlands and desertification. Soil salinization has a negative impact on plant development and contributes to land degradation.

Controlling soil salinity and reclaiming salinized agricultural land are two aspects of soil salinity control. The goal of soil salinity control is to prevent soil degradation caused by salination and to reclaim already salty (saline) soils. Soil reclamation is also referred to as soil improvement, rehabilitation, remediation, recovery, or amelioration. Irrigation is the most common man-made cause of salinization. Irrigation water from rivers or groundwater contains salts that remain in the soil after the water evaporates. The primary method of controlling soil salinity is to allow 10-20% of irrigation water to leach into the soil, which will then be drained and discharged via an appropriate drainage system. Because the salt concentration of drainage water is typically 5 to 10 times that of irrigation water, salt export equals salt import and does not accumulate.

Table of Contents

Content	I	Page No.
ABSTRAC	CT	
ACKNOW	LEDGEMENT	5
LIST OF T	ABLE	8
LIST OF F	IGURES	8
ABBREVI	ATIONS	S
СНАРТЕК	2 01	10
INTRODU	JCTION	10
1.1. H	Background	10
1.2. F	Problem statement and justification	14
1.3.	Objective	15
CHAPTER	2 02	16
2.0. Lite	rature review	16
2.1. Orig	gin of salt	18
2.2. Cau	ses of soil salinity	20
2.2.0.	Natural causes:	20
2.2.1.	Anthropogenically causes:	20
2.2.2.	Deforestation:	21
2.2.3.	Accumulation of air-borne or water-borne salts in soils:	22
2.2.4.	Overgrazing	22
2.3. Fac	tors modifying the salinity:	22
2.4. Imp	eact of salt	24
2.4.0.	Impact of salt on Environment	24
2.4.1.	Climate Change and Salinity	24
2.4.2.	Negative Impacts of Salinity on Crop Physiology	25
2.4.3.	Impact of salt on plant	26
2.4.3.1	Salt stress	26
2.4.3.2	2. Plants' Salt Stress Mechanisms	28
2.4.3.3	3. Salinity Effects on Plant Growth, Development and Biomass Yield	31
2.4.3.4	4. Shoot length	31
2.4.3.5	5. Number of Leaves	31
2.4.3.6	5. Biomass	31

2.4.	4.	Effects on Vegetable Growth and Nutrition	32
2.5.	Mea	suring soil salinity	35
2.6.	Cha	racteristics of Saline and Sodic Soils	37
2.6.	.0.	Categories of saline and sodic soils	39
2.7.	Rec	lamation of Salt affected Soil	40
2.7.	1.	Organic amendment of soil salt reclamation	42
2.7.	.2.	Chemical method of soil reclamation	43
2.7.	.3.	Biological method of soil reclamation	45
2	.7.3.1	. Phyto-desalinization	45
2.7.	4.	Physical method of soil reclamation.	46
2.8.	Lead	ching Soluble Salts and Controlling Salinity.	48
2.9.	Irrig	ation	50
2.10.	D	rainage Salts and Controlling Salinity	51
CHAPTER 03		53	
CONC	CONCLUSIONS		53
RECC	RECOMMENDATIONS AND SUGGESTIONS		
REFERENCES			56

LIST OF TABLE

Table 2.2: Categories of saline and sodic soils	2
LIST OF FIGURES	
Figure 2.1 Mechanism of salt stress in plants	9