UTILIZATION OF PLASTIC WATER BOTTLE WASTE FOR MAKING BRICKS WITH THE USE OF SAND

BY

SHANMUGARAJ KISHOKUMAR

Project Report Library - EUSL

FTC 88

DEPARTMENT OF BIOSYSTEMS TECHNOLOGY

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

2023

ABSTRACT

The outline of this study is to conserve the environment and manufacture bricks by the utilization of plastic water bottle waste. Plastic is a non-biodegradable waste so after usage it becomes hazardous waste. This hazardous waste creates environmental pollution such as land, water pollution, and air pollution. In this developing world plastic waste is increasing rapidly. This project mainly tries to utilize PET-type plastics (Plastic water bottle waste). This PET plastic waste poses the potential danger of being transformed into hazardous material. Because of the high cost to manage this waste, only a small portion of PET bottles are being recycled. These materials have good characteristics such as lightweight and high strength, etc. so we can utilize these characteristics innovatively to produce plastic bricks. In this project, this plastic waste is used to manufacture plastic bricks with the addition of sand, brick manufacture by the traditional method. The plastic and sand were used in different ratios to produce plastic brick (1:1, 1:2, 1:3, 1:4.1:5, and 1:6). For the evaluation here I have used a compressive strength test and water absorption test, With these test results, I concluded these bricks are suitable for underground construction and pavement construction. Plastic waste can be used as a binding agent and the utilization of plastic waste can reduce environmental pollution.

CONTENTS

ABSTRACTI
ACKNOWLEDGMENTII
CONTENTS
LIST OF FIGURES VI
LIST OF CHARTSVII
LIST OF TABLES VIII
ABBREVIATION IX
CHAPTER 011
INTRODUCTION
1.1 BRIEF INTRODUCTION1
1.2 PLASTICS
1.2.1 PET- Plastic (Polyethylene terephthalate)
1.2.2 Characteristics of PET3
1.2.3 Resistances of PET4
1.3 WHY NEED TO MANAGE PLASTIC WASTE?
1.4 OBJECTIVES
CHAPTER 02
REVIEW OF LITERATURE

CHAPTER 03
MATERIALS AND METHODOLOGY
3.1 MATERIALS15
3.1.1 Sand15
3.1.2 PET Plastic
3.2 Methodology16
3.2.1 Collection of Material16
3.2.2 Fixing the Proportion of Sand and Plastic17
3.2.3 Preparation of Block Mould17
3.2.4 Procedure of Casting Plastic Sand Blocks Plastic waste collection17
3.2.5 TESTS ON BLOCK
CHAPTER 04
RESULTS AND DISCUSSION
4.1 Compressive Strength Measurements23
4.2 WATER ABSORPTION MEASUREMENTS25
CHAPTER 05
CONCLUSIONS27
5.1 For the University28
5.2 FOR MICRO AND SMALL ENTERPRISES
5.3 For the Community29

5.4 FOR FURTHER RESEARCH

REFERENCES	50
------------	-----------

LIST OF FIGURES

FIGURE 1:CHEMICAL STRUCTURE OF PET
FIGURE 2: PROCESS OF CASTING PLASTIC SAND BLOCKS
FIGURE 3: THE WEIGHING OF SAND(LEFT) AND PLASTIC(RIGHT) FOR THE BATCHING PROCESS 18
FIGURE 4: MELTING THE PLASTIC BOTTLES
FIGURE 5: MIXING MOLTED PLASTIC AND SAND
FIGURE 6: MOLDING THE PLASTIC SAND BLOCK IN THE MOULD, (B). PLASTIC SAND BLOCK
FIGURE 7: COMPRESSION TEST TOOL
FIGURE 8: APPLYING LOAD
FIGURE 9: AFTER TESTING
Figure 10: SUBMERGE BRICK IN TO WATER
FIGURE 11: WEIGHING OF BRICK

LIST OF CHARTS

CHART 1: AVERAGE COMPRESSIVE STRENGTH AS A FUNCTION OF SAND PLASTIC RATIO
CHART 2: AVERAGE WATER ABSORBANCE AS A FUNCTION OF SAND PLASTIC RATIO

LIST OF TABLES

TABLE 1:PHYSICAL PROPERTIES OF PET.	16
TABLE 2; COMPRESSIVE STRENGTH MEASUREMENTS	23
TABLE 4:WATER ABSORPTION MEASUREMENTS	25