

A DISEASE OF Cucumis sativus L. (Gherkin): IDENTIFICATION

AND CONTROL OF THE CAUSAL ORGANISM (in vitro)

BY

MATHARAGE RASHMI KAUSHALYA

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

2023

ABSTRACT

Gherkin (Cucumis sativus L.) is most popular vegetable, Cucumis sativus L. was recently found to have an unidentified disease while being grown in a protected area in the Gampaha district. The disease caused elder plants to yellow as one of its symptoms. The lowest leaves of infected plants get yellow and dry, and they quickly wilt. In the early stages of the disease, the roots are unharmed, and the leaves transform from pale green to golden yellow. With the goal of identifying the new disease affecting *Cucumis sativus L*, this study compared the effectiveness of a few selected bio pesticides and synthetic pesticides in addition to identified the cause organisms, management strategies, and techniques for its prevention. Three pathogen types were isolated and they were identified as Aspergillus niger sp. (pathogen type one), Didymella spp. (pathogen type two) and one bacteria spp. (pathogen type three). Three synthetic fungicides (Homail, Daconil, folicur) and three biological control agent (Trichoderma viride, Trichoderma harzianum and Pseudomonas fluorescens) were tested in vitro against the causal organisms. T5 (Pseudomonas fluorescens +Trichoderma harzianum) and T9 (Foliar), T11 (Homail) were most effective in controlling pathogen type one and T2 (Trichoderma viride), T5 (Pseudomonas fluorescens + Trichoderma harzianum), T8(Trichoderma viride + Pseudomonas fluorescens + Trichoderma harzianum) and T9(Foliar), T10 (Dacon) and T11(Homail) were the best treatments in controlling pathogen type two.

Keywords: Aspergillus niger, Cucumis sativus L., Didymella spp, Trichoderma viride, Pseudomonas fluorescens, Trichoderma harzianum

TABLE OF CONTENT

Contents

DECLARATIONError! Bookmark not defined.		
ACKNOWLEDGMENTv		
ABSTRACTvi		
CHAPTER 11		
INTRODUCTION1		
1.1Background and justification1		
1.20bjectives of the study4		
1.2.1General objective4		
1.2.2Specific objectives		
CHAPTER 2		
2.1 LITERATURE REVIEW		
2.2 The origin of Cucumis sativus L5		
2.3 common pathogen disease and control21		
2.3.1Identification of Aspergillus spp23		
2.3.1.1. Diseases caused by Aspergillus spp		
2.3.2 Identification of Didymella spp		
2.3.2.1Diseases caused by Didymella spp		
CHAPTER 3		
3.1 MATERIALS AND METHODS Experimental site		
3.2 Collection of samples		

	3.3 Isolation of pathogens
	3.4 Identification of pathogen45
	3.5 In vitro screening
CH	APTER 4
	4.1 RESULTS AND DISCUSSION
	4.1.1Identification of pathogens49
	4.1.2.Pathogen type one
	4.2 In vitro screening results
CHAPTER 5	
5	5.1 CONCLUSION AND RECOMMENDATION
	5.1.1Recommendation and future direction60
5	.2 Reference

LIST OF TABLES

Table 1 Growth temperature	Error! Bookmark not defined.
Table 2 Tested synthetic fungicides, bio control agent their dosages for a	controlling the disease of
gheerkin	
Table 3 Mean growth inhibition percentage of pathogen type on fungal of	olonies on PDA54
Table 4 Mean growth inhibition percentage of pathogen type two fungal	colonies on PDA57

LIST OF FIGURES

Figure 1 Cucumis sativus L. plant
Figure 1.2- Vegetative growth stages of gherkin plant11
Figure 1.3- Male and female flower types
Figure 1.4- Common trellises types
Figure 2.1- Growth and colony morphological characteristic (top and reverse) of Aspergillus species on
MEA, CYA, CY20S and CREA Source: Adapted from Najjar et al. (2017)25
Figure 2.1.1- Structure of Aspergillus under microscope
Figure 2.2- Diagrammatic lifecycle of Aspergillus spp
Figure 2.2.3- Didymella bryoniae, A- pseudothecia ,B- Asci bitunicate, C- bitunicate
Figure 2.2.4- Didymella bryoniae A- Perithecia B- Asci with ascospores C- Ascodpores
Figure 2.3- Conidia released from pycnidia and ascospores inside asci, the flask-shaped structure
released from perithecia, on an infected plant tissue34
Figure 2.4- Classification of biocontrol agents
Figure 3.1 - Symptoms of a diseased Gherkin plant A- leaf lesions B- infected stems and petioles, c
Marginal rot of gherkin leaf D and E - leaves of infected plants get yellow and dry, plant wilt43
Figure 3.2- Pathogen isolation procedure. (A) Separated leaves, upper parts of the stems and collar
regions of infected plants; (B) surface sterilization (c) Pathogen isolation; (D) Culturing44
Figure 3.3- Sub culturing of fungal pathogen45
Figure 3.4- Sub culturing of bacterial pathogen46
Figure 4.1- A- pathogen type one colony on PDA B- Septate hyphae of Aspergillus niger c- Aspergillus
spp.conidias and conidiophore, under the microscope 400X
Figure 4.2- pathogen type two. Colony on the PDA B- Conidia released from pycnidia embedded on a
infected plant tissue. C- The morphological characters of conidia51

Figure 4.3- Colony appearance of pathogen type three on PDA
Figure 4.4- Microscopic view of pathogen type three
Figure 4.5 - mean growth inhibition percentage of pathogen type on fungal colonies on PDA54
Figure 4.6- Observations of in vitro fungicides screening on pathogen type one A- T1 Control B-T2
Trichoderma viride
Figure 4.7- mean growth inhibition percentage of pathogen type two fungal colonies on PDA57
Figure 4.8- Observations of in vitro fungicides screening on pathogen type two A-T1 Control B-T2
Trichoderma viride

Х