DEVELOPMENT OF TREATMENT POCEDURE FOR BREWERY SPENT YEAST SLURRY (Saccharomyces cerevisiae) AS CHEAP PROTEIN SOURCE FOR CATTLE NOURISHMENT

BY

WICKRAMA ARACHCHIGE SACHITH MADUSHAN

FACULTY OF TECHNOLOGY

EASTREN UNIVERSITY

ABSTRACT

Brewery spent yeast slurry is a nutritionally reach by product generating from brewing process and have the potential to use in animal nourishment as a cheap source of protein compare to commercial feed formulations with further treatments to reduce the bitterness character by reducing iso - alpha acid concentration and dissolved alcohol content. Different concentrations of alkaline - sodium hydroxide (NaOH) 0.1N, 1N, 2N, 3N, were used to treat the brewery spent yeast collected from Heineken Lanka Limited at room temperature (28 °C) with compare to fresh water as control to identify the effectiveness with the best removal of bitterness character (iso - alpha acid), best removal of alcohol with well-preserved yeast cell count. For analysis those parameters anton paar alcolizer method, spectrophotometer method and neucleo cell counter method were used respectively. It is evident that the bitterness character of brewery spent yeast must reduce to 2 BU for usage in edible purpose. According to the final data analysis better reduction of bitterness evident with alkaline treatment compare to the fresh water treatment and 2N concentration of sodium hydroxide (NaOH) was proved as the best treatment to reduce the bitterness of brewery spent yeast at the room temperature (28 °C). The resulted bitterness, alcohol and total cell counts were 0.32500 BU, 0.02000 v/v and 1.06×10^5 respectively. To preserve the treated spent yeast centrifugal drying method was used and powder recovering capacity was 49.7%. The sieve analysis proved majority of powder portion (80.40%) is 0.50 mm - 0.125 mm diameter range. Active dry yeast powder for crude protein analysis by semi-micro keldahal method as modified by Bremner, (1965) proved it contain 46.4 % crude protein which can cheaply use in cattle nourishment comparatively with commercially formulated feed.

i

TABLE OF CONTENT

ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENT	iv
LIST OF TABLE	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	7
2.1 Beer	7
2.2 Role of yeast (Saccharomyces cerevisiae) in brewing process	7
2.3 Yeast (Saccharomyces cerevisiae) propagation in brewing	8
2.4 Brewery spent yeast	10
2.4.1 Brewery Spent Yeast Composition and Properties	12
2.4.1.1 Protein	12
2.4.1.2 Carbohydrates	13
2.4.1.3 Mineral and vitamin content	14
2.4.1.4 Phenolic compounds	16
2.4.1.5 Glutathione	17
2.5 Brewery spent yeast in animal feed	18
2.5.1 Brewery spent yeast usage in cattle rearing and nourishment	19
2.5.2 Brewery spent yeast usage in poultry rearing and nourishment	21
2.5.3 Brewery spent yeast usage in lamb rearing and nourishment	22
2.5.4 Brewery spent yeast usage in aquaculture as a feed supplement	22

2.6 Bitterness of spent yeast slurry	23
2.7 Alcohol in brewery spent yeast slurry	25
2.8 De -Bittering of spent yeast	26
2.9 Different methods of brewery spent yeast drying	28
2.9.1 Drum drying	28
2.9.2 Centrifugal drying of brewery spent yeast	30
2.9.2.1 Advantages of centrifugal drying	30
2.9.2.2 Limitations of centrifugal drying	31
CHAPTER 3: RESERCH METHADOLOGY	32
3.1 Location of study	33
3.2 Sample collection	34
3.3 Separation of liquid phase of slurry	34
3.4 Determination of alcohol, bitterness and total cell count of the spent yeast	34
slurry	
3.4.1 Determination of alcohol level	34
3.4.2 Determination of bitterness level	34
3.4.3 Determination of total cell count	35
3.5 Treatment preparation	37
3.6 Treatments by alkaline wash process (sodium hydroxide - NaOH)	37
3.7 Treated sample wash by fresh water	37
3.8 Determination of alcohol, bitterness and total cell count of the treated spent	38
yeast slurry	
3.8.1 Determination of alcohol level	37
3.8.2 Determination of bitterness level	38
3.8.3 Determination of total cell count	39

3.9 Treatments and replicates analyzing by CRD (Complete Randomize	40
Design) method	
3.10 Development of yeast powder by centrifugal drying method	40
3.11 Sieve analysis of active dry yeast powder	41
3.12 Keldahal analysis for crud protein	41
CHAPTER 4: RESULT AND DISCUSSION	43
4.1 Composition of brewery spent yeast slurry	43
4.2 De – bittering by different alkaline treatments	49
4.3 Bitterness content	50
4.4 Alcohol content	52
4.5 Total cell count	55
4.6 Powder generation by centrifugal drying method	57
4.7 Kejeldhal analysis	59
CHAPTER 5: CONCLUSION	61
REFERANCES	63
APPENDIX 1	70
APPENDIX 2	71
APPENDIX 3	75

3.9 Treatments and replicates analyzing by CRD (Complete Randomize	40
Design) method	
3.10 Development of yeast powder by centrifugal drying method	40
3.11 Sieve analysis of active dry yeast powder	41
3.12 Keldahal analysis for crud protein	41
CHAPTER 4: RESULT AND DISCUSSION	43
4.1 Composition of brewery spent yeast slurry	43
4.2 De – bittering by different alkaline treatments	49
4.3 Bitterness content	50
4.4 Alcohol content	52
4.5 Total cell count	55
4.6 Powder generation by centrifugal drying method	57
4.7 Kejeldhal analysis	59
CHAPTER 5: CONCLUSION	61
REFERANCES	63
APPENDIX 1	70
APPENDIX 2	71
APPENDIX 3	75

LIST OF TABLE

Table 2.4:- Chemical composition of spent brewery yeast	11
Table 2.6 :- Chemical composition of spent hops according to different	24
sources	
Table 3.5 – Treatment preparation	36
Table 4.1 :- SGS composition analysis for brewery spent yeast	43
Table 4.1 a :- SGS analysis of brewery spent yeast for heavy metals	47
Table 4.1 b :- SGS analysis for Salmonella spp. for brewery spent yeast	48
Table 4.2 :- Preliminary inspection results of brewery spent yeast for alcohol,	48
bitterness and total cell count	
Table 4.3 :- Effect of different sodium hydroxide (NaOH) concentrations on	51
bitterness level	
Table 4.4 :- Effect of different sodium hydroxide (NaOH) concentration on	55
alcohol level	
Table 4.6 :- Sieve diameter range of electrical sieve analyzer	59

LIST OF FIGURES

Figure 3.2 : – Brewery spent yeast slurry	33
Figure 4.5 :- Total cell count deviation of Saccharomyces cerevisiae with	56
different treatments	
Figure 4.6 :- Active dry yeast powder prepared by centrifugal drying method	58