ASSESSING THE VALAICHCHENAI LAGOON HEALTHINESS: IMPLICATION FOR AQUACULTURE SUITABILITY

By

NADARAJAH THARMINATH

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY, SRI LANKA.

2023

ABSTRACT

The present study was conducted to assess the healthiness of Valaichchenai lagoon for the aquaculture implication in terms of water quality in the Valaichchenai lagoon, Batticaloa, Sri Lanka. The specific objectives of the study were; to assess the spatial variation of physiochemical water quality parameters of the lagoon, to find out the existing threats of the lagoon and to survey the existing fish and shellfish diversity. Water samples were collected in replicate basis at predefined selected sites. Series of sampling conducted fortnightly at each sampling locations. Total of 07 sampling survey was recorded throughout the study period at each sampling points. All samplings were carried out within the daylight period. Temperature, pH, electrical conductivity, dissolved oxygen, Total dissolved solid, salinity, turbidity, density, heavy metals (cadmium, chromium and magnesium), nitrate and phosphate were measured and fish species were identified within the lagoon during study period. Results revealed that salinity (0.285 \pm 0.184 to 12.571 \pm 0.841 ppt), electrical conductivity (222 \pm 28.005 to 28361.4 \pm 2025.722 μ S/cm), total dissolved solids $(123.143 \pm 12.820$ to 13760.9 ± 950.562 mg/l), density $(1.008 \pm 0.0001$ to $1.008 \pm$ 0.0001 g/cm^3), cadmium (0.0025 ± 0.0006 to $0.0412 \pm 0.0116 \text{ mg/L}$), magnesium $(10.523 \pm 2.803 \text{ to } 95.992 \pm 18.374 \text{ mg/L})$, phosphate $(0.047 \pm 0.011 \text{ to } 1.071 \pm 1.071 \pm 1.071 \pm 1.071 \pm 1.071)$ 0.068 mg/L) and nitrate $(0.242 \pm 0.064 \text{ to } 2.1 \pm 0.089 \text{ mg/L})$ showed significant spatial variation. Totally 28 species of fish were identified during study period. Phosphate and Cadmium level were exceeded the recommended level for the aquaculture implication in L2 and L4 regions due to the flood condition during the rainy season, high level of input of river water and high level of domestic wastes contamination. According to this study, Valaichchenai lagoon had different range of salinity level. L1, L2, L3 and L4 regions salinity level is below 1ppt. These regions are very suitable for freshwater species culturing such as Tilapia and Carp in cages and pen along with fry rearing. L5, L6, L8 and L9 regions salinity range is between 1 to 10 ppt. These regions are suitable for sea bass and Mullet culture in cages. Finally the L10 region salinity level is above the 10ppt. This high saline region can be utilize for seaweed culture on raft and crab fattening.

Key words: Lagoon, Healthiness, Water quality, Aquaculture

TABLE OF CONTENTS

ABSTRACTi
ACKNOWLEDGEMENTiii
DECLARATION iv
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATION xi
CHAPTER 01 1
INTRODUCTION 1
1.1 Background
1.2 Problem statement and justification
1.3 Rational of the study
1.4 Objectives of the study
CHAPTER 02
REVIEW OF LITERATURE
2.1 Coastal lagoons7
2.1.1 Coastal lagoons
2.1.2 Origin and Distribution of Coastal Lagoon7
2.1.3 Classifications of Coastal Lagoons
2.1.3.1 Choked lagoons
2.1.3.2 Restricted lagoons
2.1.3.3 Leaky lagoons
2.1.4 Lagoons in Sri Lanka 11
2.1.5 Characteristics of Coastal Lagoon
2.2 Lagoon Water quality and Aquaculture
2.2.1 Water quality and Aquaculture
2.2.1.1 Temperature
2.2.1.2 Dissolved oxygen
2.2.1.4 Salinity
2.2.1.5 pH
2.2.1.6 Electrical conductivity
2.2.1.7 Total Dissolved Solid (TDS)
2.2.1.8 Turbidity
2.2.1.9 Nitrate

2.2.1.10 Phosphate	24
2.2.1.11 Heavy metals	25
2.3 Aquaculture in lagoon	29
2.3.1 Aquaculture	29
2.3.2 History of Aquaculture in Lagoons	30
2.3.3 Role of Aquaculture in food security	31
2.3.4 Lagoon aquaculture practices	32
2.3.5 Current status of Sri Lankan aquaculture	33
2.4 Biodiversity of coastal lagoons	35
2.4.1 Lagoon Biodiversity	35
CHAPTER 03	38
MATERIALS AND METHODS	38
3.1 Study area and sampling locations	38
3.2 Study period	42
3.3 Water sample collection	43
3.4 Analysis of Water Quality parameter	43
3.5 Statistical Analysis	44
CHAPTER 04	45
RESULT AND DISSCUSSION	45
4.1 Physio-chemical parameters of the lagoon	45
4.1.1 Salinity	45
4.1.2 Temperature	47
4.1.3 Turbidity	48
4.1.4 Electrical conductivity	50
4.1.5 Total dissolved solid	52
4.1.6 pH	53
4.1.7. Dissolved oxygen	55
4.1.8 Phosphate	57
4.1.9 Nitrate	59
4.1.10 Heavy metals	62
4.1.10.1 Magnesium	62
4.1.10.2 Chromium	63
4.1.10.3 Cadmium	64
4.1.11 Density	66
4.2 Fish and Shellfish species diversity	67

CHAPTER 05
CONCLUSION
CHAPTER 06
FUTURE CONCERNS AND RECOMMENDATIONS
6.1 Future concerns
6.2 Recommendations
CHAPTER 07
REFERENCES
APPENDIX I
APPENDIX II
APPENDIX III
APPENDIX IV
APPENDIX V
APPENDIX VI
APPENDIX VII
APPENDIX VIII
APPENDIX IX
APPENDIX X
APPENDIX XI
APPENDIX XII
APPENDIX XIII
APPENDIX XIV

LIST OF FIGURES

Page no

Figure 2.1	Choked lagoon	08
Figure 2.2	Restricted lagoon	08
Figure 2.3	Leaky lagoon	09
Figure 3.1	Study area with sampling location	31
Figure 3.2	sampling location within Valaichchenai lagoon	33
Figure 3.3	In-situ measurement of water quality parameters	35
Figure 3.4	Measurement of heavy metals using AAS at the	
	laboratory	36
Figure 4.1	Spatial variation of mean Salinity	37
Figure 4.2	Spatial variation of mean Temperature	39
Figure 4.3	Spatial variation of mean Turbidity	40
Figure 4.4	Spatial variation of mean Electrical Conductivity	42
Figure 4.5	Spatial variation of mean TDS	43
Figure 4.6	Spatial variation of mean pH	45
Figure 4.7	Spatial variation of mean Dissolved Oxygen	46
Figure 4.8	Spatial variation of mean Phosphate	48
Figure 4.9	Spatial variation of mean Nitrate	50
Figure 4.10	Spatial variation of mean Magnesium	51

Figure 4.11	Spatial variation of mean Chromium	53
Figure 4.12	Spatial variation of mean Cadmium	54
Figure 4.13	Spatial variation of mean Density	55

LIST OF TABLES

		Page no
Table 3.1	Geographical coordinates and characteristic features of	32
	sampling locations	

Table 4.1List of fish and shellfish species recorded from Valaichchenai56Lagoon within study period