EASTERN UNIVERSITY, SRI LANKA FACULTY OF SCIENCE

SECOND YEAR FIRST SEMESTER EXAMINATION IN SCIENCE - 2021/2022

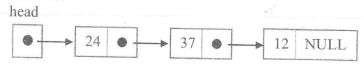
(Mar./Apr., 2024)

CS 2013 - DATA STRUCTURES AND ALGORITHMS

THEORY

Answer all questions

Time allowed: Two hours


Answer an ques	LEGELS			
Q1)			_ ##	
(a) State wha	at data structures are and expla	ain their impor	tance.	[15%]
(b) Differenti	iate linear data structures fron	n non-linear da	ita structures.	[15%]
(c) Write an	algorithm to find the maxim	num occurring	g of an element in an array	A of n
elements	and analyze the performance	of your algorit	thm.	[30%]
(d) Describe	the concept of asymptotic and	alysis in data st	tructures.	[10%]
(e) Explain the	the difference between $O(1)$ are	nd O(n) space	complexities.	[10%]
(f) Prove the	e following time complexities	can be express	sed in terms of Big-Oh notati	ion
				[20%]
i. $4n^2 - 3$	n+1	ii. 2	$2^{n+1} + 5n$	1.3
Q2)				
(a) Provide a	comprehensive comparison b	etween stack	and queue data structures.	[20%]
(b) Write an	algorithm to convert prefix to	postfix using	stack data structure.	[20%]
(c) Convert to (b).	the given prefix expression *	-E/US-/LDC	into postfix expression usin	ng part [10%]
(d) Linked Li	ist is a very commonly used li	near data struc	ture which consists of group	of nodes
in a seque	ence. Answer the following q	uestions based	on Linked List data structur	re:
i. Briefly	describe the types of linked l	ists and illustra	ate how they are represented	. [10%]
ii. Write J	Java code to implement the Li	nkedList and N	Vode classes.	[10%]
	lete the given incomplete java			List.
•				[10%]

public void Traverse()

LinkedList PTR =;

while (.....)

iv. Consider the following Linked List diagram with integer values:

Draw a diagram of the above list after the following lines of code have been executed:

Link temp=new Link(40, null);

temp.next=head.next;

head.next=temp;

[10%]

v. What are the data values of head and temp after the above code has been executed?

[10%]

Q3)

(a) The Conway's recursive sequence is defined by the following recurrence relation for positive integer n.

$$a(n) = \begin{cases} 1, & \text{if } n \in \{1, 2\} \\ a(a(n-1)) + a(n-a(n-1)), & \text{otherwise} \end{cases}$$
 (1)

i. Explain what is recursive method.

[10%]

ii. Write a recursive method for the above Conway's sequence.

[10%]

iii. Write the steps to find the output value of a(5).

[10%]

(b) You are given the following methods:

String str1 (int p) {

if (p > 0)

return "+" + str1(p-1);

else

```
return "";
}
String str2 (int p, int q) {
if (q > 0)
    return "-" + str2(p,q-1) + "-";
else
    return str1(2*p);
}
```

Write the output for the following statements:

i. System.out.println(str1(3));

[10%]

ii. System.out.println(str2(3,2));

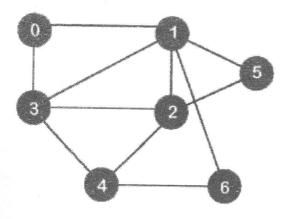
[10%]

(c) Provide the algorithm of Quick sort and analyze its time complexity.

[30%]

(d) Sort the following numbers using the above (question 3.c) algorithm.

[20%]

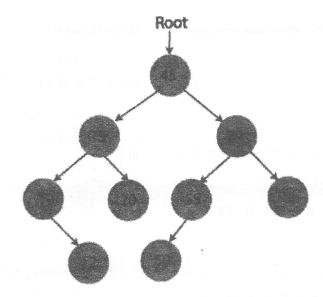

22 9 20 18 29 6 20 14 10 4 83 26 12 82

Q4)

(a) Define the terms: graph, undirected graph, and directed graph.

[15%]

(b) Find the Depth First Search and Breadth First Search for the given undirected graph. (Start from 6)



[20%]

(c) Describe the preorder, inorder, and postorder traversal techniques for binary trees.

[15%]

(d) Provide the algorithm or pseudocode for each traversal method in Q4.c and demonstrate their application on following binary tree.

[50%]