EASTERN UNIVERSITY, SRI LANKA

FACULTY OF SCIENCE

SECOND YEAR FIRST SEMESTER EXAMINATION

IN SCIENCE - 2021/2022

(Mar./Apr., 2024)

MT2012 - LINEAR ALGEBRA I

Answer all questions

Time: Two hours

1. (a) i. Define vector addition and scalar multiplication on a set $V = \{x: x \in \mathbb{R}, x > 0\} \text{ as follows:}$

$$x \oplus y = xy \text{ and } \alpha \odot x = x^{\alpha} \ \forall x, y \in V, \ \forall \alpha \in \mathbb{R}.$$

Show that (V, \oplus, \odot) is a vector space over \mathbb{R} .

ii. Let \mathbb{Z}^3 be the set of tuples of integers with vector addition '+'and scalar multiplication ' . ' are defined by

$$(l, m, n) + (l', m', n') = (l + l', m + m', n + n'),$$

 $\alpha \cdot (l, m, n) = ([\alpha] \ l, [\alpha] \ m, [\alpha] \ n)$

where $[\alpha]$ is the integer part of α and $l, m, n, l', m', n' \in \mathbb{Z}$. Is $(\mathbb{Z}^3, +, .)$ a vector space over the field \mathbb{R} ? Justify your answer.

- (b) Which of the following sets are subspaces of \mathbb{R}^3 . Justify your answer for each case.
 - i. $\{(k, l, m) : k^2 = m^2\};$
 - ii. $\{(a, b, c) : a^2 + b^2 + c^2 \le 1\}.$

- 2. (a) Define the following:
 - i. a linearly independent set of vectors;
 - ii. a basis of a vector space;
 - (b) Let V be a vector space. Show that
 - i. any linearly independent set of vectors of V may be extended to a basis for V:
 - ii. if L is a subspace of V, then there exists a subspace M of V such that $V=L\oplus M$, where \oplus denote the direct sum.
 - (c) Let V be a vector space over the field \mathbb{F} .
 - i. let $\{u_1, u_2, \dots, u_n\}$ be a linearly dependent subset of V with each $u_j \neq 0$, $j = 1, 2, \dots, n$. Prove that, there exist u_i ($2 \leq i \leq n$) is a linear combination of the preceding vectors.
 - ii. let S be a subset of V and $u, v \in V$. If $u \in \langle S \cup \{v\} \rangle$ and $u \notin \langle S \rangle$, then prove that $v \in \langle S \cup \{u\} \rangle$.

3. (a) Define:

- (i) Range space R(T);
- (ii) Null space N(T)

of a linear transformation T from a vector space V into another vector space W.

Find R(T), N(T) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by:

$$T(x, y, z) = (x + 2y + 3z, x - y + z, x + 5y + 5z) \ \forall (x, y, z) \in \mathbb{R}^3.$$

Verify the equation, $\dim V = \dim(R(T)) + \dim(N(T))$ for this linear transformation.

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by T(x, y, z) = (x + 2y, x + y + z, z) be a linear transformation and let $B_1 = \{(1, 1, 1), (1, 2, 3), (2, -1, 1)\}$ and $B_2 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ be bases of \mathbb{R}^3 .
 - i. find the matrix representation of T with respect to the basis B_1 ;

- ii. using the transition matrix, find the matrix representation of T with respect to the basis B_2 .
- 4. (a) Define the following terms:
 - (i) elementary matrix;
 - (ii) row reduced echelon form of a matrix.
 - (b) Let A be a non-singular matrix. Prove the following:
 - (i) A^{-1} can be obtained by applying the same elementary row operations when transform A into identity matrix;
 - (ii) if B is a matrix obtained by performing an elementary row operation on A, then A and B have the same rank.
 - (c) Find the rank of the matrix

(d) Find the row reduced echelon form of the matrix

$$\left(\begin{array}{ccccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right).$$