

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE(2015/2016)

FIRST SEMESTER (Jul./Aug., 2017)

AM 106 - TENSOR CALCULUS

Answer all question

Time: One hour

1. (a) Define what is meant by the terms symmetric tensor, skew symmetric tensor and invariant.

If $ds^2 = g_{jk} dx^j dx^k$ is an invariant, then prove that g_{jk} is a symmetric covariant tensor of rank two.

- (b) The covariant components of a tensor in rectangular coordinate system are 2x y, x^2y and yz. Find its covariant components in cylindrical coordinate system.
- (c) Let A_{pq}^{rst} be a tensor. Choose p=t, q=s and show that A_{pq}^{rqp} is a tensor. What is its rank?
- 2. (a) Define the Christoffel's symbols of the first and second kind.
 - (b) With the usual notations, prove the following:

i.
$$[pq, r] = g_{rs}\Gamma^s_{pq};$$

ii.
$$\frac{\partial g_{rs}}{\partial r^m} = [rm, s] + [sm, r];$$

iii.
$$\frac{\partial g^{rs}}{\partial x^m} + g^{rn} \Gamma_{mn}^s + g^{sn} \Gamma_{mn}^r = 0.$$

(c) Show that the non-vanishing Christoffel's symbols of the second kind in spherical coordinate (r, θ, ϕ) are given by

$$\Gamma^1_{22} = -r$$
, $\Gamma^2_{21} = \Gamma^2_{12} = \Gamma^3_{13} = \Gamma^3_{31} = \frac{1}{r}$, $\Gamma^1_{33} = -r\sin^2\theta$, $\Gamma^2_{33} = -\sin\theta\cos\theta$ and $\Gamma^3_{23} = \cot\theta$.