

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2015/2016

FIRST SEMESTER (August/Sepetember, 2018)

MT 1212 - ALGEBRA

nswer all questions

Time: Two hours

- 1. (a) For any integers a, b, c, prove the following:
 - i. if a|b and a|c, then $a^2|bc$;
 - ii. a|b if and only if ac|bc, where $c \neq 0$.
 - (b) Prove the following properties of the greatest common divisor:
 - i. if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1;
 - ii. if gcd(a, b) = 1 and c|(a + b), then gcd(a, c) = gcd(b, c) = 1.
 - (c) Determine all solutions in the positive integers of the following Diophantine equation

$$54x + 21y = 906.$$

- 2. (a) Solve the following linear congruences:
 - i. $6x \equiv 15 \pmod{21}$;
 - ii. $34x \equiv 60 \pmod{98}$.
 - (b) Solve the following set of simultaneous congruences:

$$x \equiv -2 \pmod{5}$$

$$x \equiv 3 \pmod{2}$$

$$x \equiv 2 \pmod{7}$$

$$x \equiv -18 \pmod{11}.$$

- 3. (a) Define the term group.
 - (b) Show that the set \mathbb{Z} of all integers is an abelian group with respect to the oper * defined by

$$a * b = a + b + 1 \quad \forall a, b \in \mathbb{Z}.$$

- (c) i. Show that the identity element of a group is unique. ii. Show that a group G is an abelian group if $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- 4. (a) Let H be a non-empty subset of a group G. If $ab^{-1} \in H$ for each $a, b \in H$, prove that H is a subgroup of G, where a^{-1} is the inverse of a.
 - (b) Let H be a subgroup of G and let $g \in G$. Show that

$$qHq^{-1} = \{ghg^{-1} : h \in H\}$$

is a subgroup of G.

(c) Prove that if H and K are subgroups of a group G, then $H \cap K$ is a subgroup