EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE – 2015/2016 FIRST SEMESTER (PROPER/REPAET) (NOVEMBER/DECEMBER 2017)

PH 201 ATOMIC PHYSICS AND QUANTUM MECHANICS

Time: 02 hour

Answer ALL Questions

Calculator allowed.

You may find the following information useful.

Electron Charge $e = 1.602 \times 10^{-19} \text{ C}$

Mass of an electron $m_e = 9.109 \times 10^{-31} \text{kg}$

Permittivity in free space $\varepsilon_o = 8.854 \times 10^{-12} \text{Fm}^{-1}$

Velocity of light $c = 3 \times 10^8 \,\mathrm{ms}^{-1}$

Planck's constant $h = 6.625 \times 10^{-34} \,\mathrm{Js}$

 $1eV = 1.602 \times 10^{-19} J$

- a) Explain the experimental observations that suggest particle nature (1) ... (30% mark electromagnetic radiation.
 - b) Explain how wave character of an electron beam is established by Davisson ... (30% mark Germer Experiment.
 - c) A beam of X- rays of wavelength 0.01 nm is incident on a carbon target. scattered X-rays are detected at an angle of 60° to the direction of the incide beam. Find the wavelength of the scattered X-rays. Explain why the waveleng of scattered X-rays is different from the incident X-rays?

... (40% mark

You may take the observed Compton shift is $\Delta \lambda = \frac{h}{m_s c} (1 - \cos \phi)$, where ϕ is scattered angle of X-rays, and other symbols have their usual meanings given front page.

a) Name three experimental evidences for the existence of atoms. (2)

... (15% marks

b) Atomic and molecular spectra are discrete. What does discrete mean?

... (10% mark

- c) Briefly describe how is the de Broglie wavelength of electrons related to ... (15% mark quantization of their orbits in atoms and molecules?
- d) Briefly explain the important features of Rutherford's scattering of α -particles! gold foil, which supported the nuclear model of the atom against Thomson ... (15% mark model.
 - i. Show that the Rutherford's scattering formula is,

 $b = \frac{Qq_{\alpha}}{4\pi \epsilon_0 m_{\alpha} v^2} \cot \frac{\vartheta}{2}$ with usual notations.

... (25% mark

ii. A 5 MeV α -particles approaches a gold (Z=79) nucleus with an imp parameter of 2.6×10^{-13} m, through what angle will it be scattered.

... (20 % mark

- a) Motivate the single-particle wave-function using the modified Young's double slit experimental observations, and interpret the physicality of a particle when undetected and detected. ... (35% marks)
 - b) Define *probability amplitude* and *expectation value* with their physical meaning. ...(15% marks)
 - c) The single-particle wave-function of a particle confined in a one-dimensional infinite potential well of width L is given by $\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$, where $n = \pm 1, \pm 2, \pm 3, \dots$ Show that
 - i. the expectation value of energy of a particle of mass m confined in the well is $\langle E \rangle = \frac{h^2}{8mL^2} n^2$; ...(25% marks)
 - ii. the average momentum $\langle p \rangle$ of a particle confined in the infinite potential well is zero. ...(25% marks)

You may take the *momentum* and *kinetic energy* operators to be $-i\hbar \frac{\partial}{\partial x}$ and $-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$ respectively, where $\hbar = h/2\pi$.

- (4) a)
 - a) Define the term angular momentum and intrinsic spin angular momentum.

... (10% marks)

- b) Explain the physical significance of quantum numbers, which are characterize the energy level of the electron in a hydrogen atom. Write down the allowed values for each quantum numbers? (20% marks)
- c) State the selection rules for one electron spectra. ... (10% marks)
- d) State Pauli's exclusion principle for electron in an atom and show that each shell has maximum of $2n^2$ electrons, where n is the principle quantum number. ...(15 % marks)
- e) Briefly describe the spin-orbit coupling in an atom? How does it lead to the observed fine structure splitting of the spectral lines of the hydrogen atom? ... (10% marks)
- f) Distinguish between *normal* Zeeman effect and *anomalous* Zeeman effect. ... (10% marks)

- g) Consider a hydrogen atom excited to the n=3 state is placed in a magnetic \mathbb{R} the component of the magnetic quantum number m_l is along the external \mathbb{R} direction.
 - i. Evaluate the splitting of the energy levels according to the values of m_l(10 % man
 - ii. Draw split level diagram and spectrum of a hydrogen atom excited to the 3 state, when it is placed in a magnetic field. ...(15 % mark

You may use the magnetic potential energy is $\hbar\omega_L m_l$ with usual notations.