

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE (2010/2011)

FIRST YEAR FIRST SEMESTER (Apr./ May, 2017)

EXTMT 106 - TENSOR CALCULUS

Special Repeat

Answer all questions

Time: One hour

- (a) Define the Covariant tensor A_{pq} and the Contravariant tensor A^{pq} .
 - (b) Write down the law of transformation for the following tensors:
 - i. A_{ms}^{qr} ;
 - ii. B_{lm}^{ijk} ;
 - iii. C_{mn} .
 - (c) If $ds^2 = g_{jk} dx^j dx^k$ is an invariant, show that g_{jk} is a symmetric covariant tensor of rank two.
 - (d) Find g and g^{jk} corresponding to the line element

$$ds^{2} = 5(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} - 6dx^{1}dx^{2} + 4dx^{2}dx^{3}.$$

- 2. (a) Define the Christoffel's symbols of the first and second kind.
 - (b) Determine the Christoffel's symbols of the second kind for the line element given by

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \ d\phi^2$$
.

(c) With the usual notations, prove the followings:

i.
$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p];$$

ii.
$$[pq, r] = g_{rs} \Gamma^s_{pq};$$

iii.
$$\frac{\partial g^{p\,q}}{\partial x^m} = -g^{p\,n}\Gamma^q_{m\,n} - g^{q\,n}\Gamma^p_{m\,n}.$$