PERMANENT REFERENCE

ESTABLISHING THE RELATIONSHIPS

BETWEEN SOIL EROSION AND THE ASSOCIATED FACTORS

UNDER DIFFERENT SOIL SURFACE CONDITIONS

IN CULTIVATED LANDS OF HANGURANKETA CATCHMENT AREA

BY

SUNDARAMOORTHY URUTHERAKUMAR

A RESEARCH REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS OF THE ADVANCED COURSE IN

AGRICULTURAL ENGINEERING

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN AGRICULTURE

EASTERN UNIVERSITY, SRI LANKA

1986

APPROVED BY

MR. P. KRISHNARAJAH

SUPERVISOR

HEAD/SOIL CONSERVATION DIVISION

DEPARTMENT OF AGRICULTURE

PERADENIYA

SRI LANKA

S. Siranbramanian

DR. S. SIVASUBRAMANIAM HEAD/DEPT. OF AGRONOMY FACULTY OF AGRICULTURE EASTERN UNIVERSITY

CHENKALADY

SRI LANKA

: I :

ABSTRACT

In this project, attempts were made to establish the relationship between soil loss and the factors such as the amount of rainfall, erosive rainfall, erosivity of rainfall and the percentage of daily runoff under three different soil surface conditions viz. bare, disturbed and under crop cover without any disturbance. It was also intended to determine maximum erosion hazard periods of the year.

The soil loss data on medium sized (one acre) runoff plots planted with tobacco and mixed vegetables at Hapuwella subcatchment area located in the mid country of Sri Lanka were used for the above purposes.

The analysis of the experimental results gave different linear relationships between soil loss and the above factors under different soil surface conditions. It was also observed that the erosivity of rainfall is well correlated with the soil loss under above three conditions. Therefore, erosivity variations throughout the year can be used to study the overall pattern of the soil loss in this area.

Most of the erosion hazard occurs in November and in April due to the inadequate soil conservation measures and wrong

agricultural techniques adopted by the farmers during these periods, which experience high erosive rainfall.

The results of this study could be used as a guide to predict the erosion hazards under prevailing agricultural activities and to help farmers to adopt suitable soil conservation measures to minimise soil losses from their fields.

CONTENTS

		Page
	Abstract	I
	Acknowledgement	II
	Table of Contents	III
	List of Figures	· IV
	List of Tables	ν
1.	Introduction	I
2.	Literature Review	5
	2.1 Process of soil erosion	5
	2.2 Types of water erosion	9
	2.3 Factors affecting water erosion	IO
	2.4 Erosivity and erodibility	II
	2.5 Physical characteristics of rainfall affecting soil erosion	12
	2.5.1 Total amount of rainfall	I2
	2.5.2 Intensity of rainfall	I3
	2.5.3 Distribution of rainfall	I4
	2.5.4 Kinetic energy of rainfall	I4
	2.5.5 Momentum of rainfall	16
	2.5.6 Rainfall erosivity index	16
	2.5.7 Erosive rainfall	18

				Page
	2.6	Estima	ation of soil losses	I8
		2.6.1	Universal soil loss equation	I9
		2.6.2	Soil loss measurements by runoff plots	I9
		2.6.3	Soil loss tolerance limit	20
3.	Meth	ods and	d Materials	21
	3.1	Site s	selection	2I
	3.2	Descri	iption of the study area	2I
	1	3.2.1	Topography	23
		3.2.2	Climate	23
	,	3.2.3	Soil characteristics	25
	1	3.2.4	Land use	25
	3.3	25		
		3.3.1	Design of experimental layout	25
		3.3.2	Measurement of precipitation	29
			~	
	3.4	Experi	mental procedure	30
		3.4.1	Measurement of runoff	30
			3.4.1.1 Computation of daily percentage of runoff	30
		5.4.2	Measurement of daily soil loss	31
			3.4.2.1 Sample collection	32
			3.4.2.2 Laboratory analysis	32
			3.4.2.3 Computation of daily soil losses	32

						Page
		3.4.3	Determination			33
		3.4.4	Computation K.E > 25	of rainfall	energy and	34
	3.5	Analys	is of data			34
4.	Resu	lts and	Discussions			36
	4.1	Relati and so	onship betwee il loss	n amount of	rainfall	36
	4.2	Relati	onship betwee	n intensity	of rainfal	38
	4.3	Relati	onship betwee il loss	n erosive r	ainfall	43
	4.4	Relati	onship betwee	n erosivity oss	of	46
	4.5	Relation runoff	onship betwee	n percentag	e of daily	50
	4.6		al variations ll and soil l		ty of	53
	4.7		erosion haz	ard and sui	table	58
i.	Concl	usion		4	i	60
	Bibil	iograph	ıy		1	62
		-				UZ