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A class of exact strange quark star model
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Abstract. Static spherically symmetric space-time is studied to describe dense compact star with
quark matter within the framework of MIT Bag Model. The system of Einstein’s field equations for
anisotropic matter is expressed as a new system of differential equations using transformations and
it is solved for a particular general form of gravitational potential with parameters. For a particular
parameter, as an example, it is shown that the model satisfies all major physical features expected in
a realistic star. The generated model also smoothly matches with the Schwarzschild exterior metric
at the boundary of the star. It is shown that the generated solutions are useful to model strange quark
stars.
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1. Introduction

The modelling and description of compact astrophysical objects have been a critical issue
in relativistic astrophysics, and strange quark stars (SQS) have long been proposed as
an alternative to neutron star models. Recent experimental observations of radio timing
measurements such as a strong Shapiro delay signature in the binary millisecond pulsar
PSR J1614-2230 [1] and of the three post-Keplerian effects in the binary pulsar PSR
J1903+0327 [2] suggest that the densities of these compact objects exceed by far the
ground state density of atomic nuclei, ρ0 ∼ 0.16 nucleons/fm3 (∼2.7 × 1014 g cm−3) or
the so-called neutron stars. These experimental results, together with many others [3–6],
suggest that these compact stars might contain a deconfined and chirally restored quark
phase. The so-called hybrid stars contain quarks only in their interior either in the form
of a pure quark matter core or as a quark–hadron mixed phase. The SQS [7] is realized
for the special scenario of absolutely stable strange quark matter (SQM) that forms the
true ground state of nuclear matter [8] and occupies the entire compact star. These highly
dense compact objects are not compatible with the standard neutron star models. A SQS
would be the bulk SQM phase consisting of almost equal number of up, down and strange
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quarks, plus a small number of electrons to ensure charge neutrality. SQM would have
a lower charge-to-baryon ratio compared to the nuclear matter and can show itself in the
form of an SQS [8]. As SQM is more stable and bound at finite density, one expects
configurations of quark stars with macroscopic properties quite different from neutron
stars [9–11]. Strange stars are expected to form during the collapse of the core of a
massive star after the supernova explosion. Neutron stars with 1.5–1.8M� masses having
rapid spins are theoretically the best candidates for conversion to an SQS.

The SQS, founded from quark matter theory consists of too many unsolved puz-
zles which are usually involved in the physics of these high-density relativistic objects
and hence prohibits considering all physical and astrophysical properties simultaneously.
Therefore, most of the SQS studies have been performed within the framework of quark
matter MIT Bag Models [9,11–16]. In the quark bag model [17], it is assumed that break-
ing of physical vacuum takes place inside hadrons. As a result, vacuum energy densities
inside and outside a hardron becomes essentially different and the vacuum pressure on the
bag wall equilibrates the quark pressure thus stabilizing the system. In the simplified ver-
sion of the bag model, assuming quarks are massless and non-interacting, we have quark
pressure pq = 1

3ρq, the total energy density ρ = ρq+B and the total pressure p = pq−B,
where ρq is the quark energy density. Thus, one gets the equation of state (EOS) for SQM
as p = 1

3 (ρ − 4B) [18], where B is known as the bag constant, which is the universal
pressure on the surface of any region containing quarks. The stability of the SQS is due to
the long-range effects of confinement of quarks, represented by the bag constant B [9,17].
The EOS formulated by Dey et al [6] can also be approximated to a linear form [19] that
describes the quark interaction in a SQS by an interquark vector potential originating from
gluon exchange and a density-dependent scalar potential which restores chiral symmetry
at high density. Therefore, linearity in EOS seems to be a feature in the composition of
compact objects such as SQS. Nevertheless, there have been a few works reported with
non-linear EOS like by Varela et al [20], Feroze and Siddiqui [21] and Maharaj and Mafa
Takisa [22] on anisotropic matter in the presence of electromagnetic field. Recent work
of Maharaj and Takisa provides a new class of physically reasonable exact solutions to
the Einstein–Maxwell system of equations in the static spherical symmetry, utilizing a
quadratic equation of state relating the radial pressure to the energy density.

However, as densities within SQS are normally beyond nuclear matter density, one
expects anisotropy to play a crucial role in the modelling of ultracompact stars such as
SQS. Early work of Ruderman showed that nuclear matter may become anisotropic in the
high-density region of order 1015g cm−3, where nuclear interactions need to be treated
relativistically [23]. Since the pioneering work of Bowers and Liang [24], there has been
extensive literature devoted to the study of anisotropic, spherically symmetric, static rela-
tivistic matter distributions in which radial pressure (pr) is not equal to tangential pressure
(pt). The difference � = pt − pr is crucial for calculating surface tension of a compact
star. The anisotropy will be directed outward (repulsive) when pt > pr (i.e., � > 0)
and inwards when pt < pr (i.e., � < 0). Chan et al [25] studied in detail the role
played by the local pressure anisotropy in the onset of instabilities and showed that small
anisotropies might in principle drastically change the stability of the system. Various fac-
tors may contribute to pressure anisotropy [26] such as exotic phase transitions during
gravitational collapse [27,28], the existence of a solid core or the presence of a type-3A
superfluid [29], strong electromagnetic fields [30–32], viscosity [33] as well as the slow
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rotation of a fluid [34]. Though we lack a complete understanding of the microscopic
origin of the pressure anisotropy, the role of pressure anisotropy in modelling compact
stars is a field of active research. There have been different solutions of Einstein’s field
equations for anisotropic fluid distribution with spherical geometry [35–43], in particular,
results on modelling for anisotropic SQM [37–39,42,43] with a barotropic EOS. How-
ever, relatively few interior solutions have been reported in the literature that satisfy all
the physical requirements of a realistic star.

We have however done a study on an anisotropic compact static sphere with polytropic
EOS [42] for a particular choice of gravitational potential. In this work we have treated
the anisotropic compact spherical matter with a linear EOS by considering a generalized
form of the gravitational potential chosen in [42]. In order to compare with the results
in [42], a particular example with the same potential has been chosen in §4. A particular
distinction in the linear EOS of SQM is the non-zero surface density where the binding
effect is represented by the bag constant, whereas with polytropic EOS in the model
studies [42] the surface becomes indistinguishable with vanishingly small density. In fact,
a quark star can be bound not only by gravity but also by additional strong interaction due
to strong confinement between quarks. The quark phase inside the core is best described
by linear bag model whereas a polytropic EOS may represent a hybrid star which have
cores composed of unconfined quarks [44,45] that describe normal phase (composed of
normal baryons) and mixed phase (composed of denser baryon matter).

Our objective in this paper is to generate a new class of models for anisotropic SQM
with linear EOS using a systematic way that satisfies the physical criteria [46]: regularity
of the gravitational potentials at the origin, positive definiteness of the energy density and
the radial pressure at the origin, vanishing of the radial pressure at some finite radius,
monotonic decrease of the energy density and the radial pressure with increasing radius
and the speed of the sound is less than the speed of the light. In addition, the generated
interior metric matches smoothly with the Schwarzschild exterior metric at the boundary
of stellar object. Therefore, the generated models are expected to give a satisfactory
description of realistic astrophysical compact objects like SQS.

2. The field equations

The gravitational field should be static and spherically symmetric for describing the inte-
rior of a relativistic dense star. Consequently, we can find coordinates (xa) = (t, r, θ, φ)

such that the line element is of the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θ dφ2). (1)

We assume the energy–momentum tensor for an anisotropic imperfect fluid sphere to be
of the form

Ti j = diag(−ρ, pr, pt, pt). (2)
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The energy density ρ, the radial pressure pr and the tangential pressure pt are measured
relative to the comoving fluid velocity ui = e−νδi

0. For the line element (1) and matter
distribution (2) the Einstein’s field equations can be expressed as

ρ = 1

r2
[r(1 − e−2λ)]′, (3)

pr = − 1

r2
(1 − e−2λ) + 2ν ′

r
e−2λ, (4)

pt = e−2λ

(
ν ′′ + ν ′2 + ν ′

r
− ν ′λ′ − λ′

r

)
, (5)

where primes denote differentiation with respect to r . In the field equations (3)–(5), we are
using units where the coupling constant (8πG/c4) = 1 and the speed of light c = 1. This
system of equations determines the behaviour of the gravitational field for an anisotropic
imperfect fluid sphere.

The mass contained within a radius r of the sphere is defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (6)

With the use of the transformation

x = Cr2, Z(x) = e−2λ(r) and A2 y2(x) = e2ν(r), (7)

where A and C are arbitrary constants and we introduce the linear EOS for SQM as
motivated in the introduction:

pr = αρ − β, (8)

where α and β are constants; the systems (3)–(5) have the simple form

ρ

C
= 1 − Z

x
− 2Ż , (9)

pr = αρ − β, (10)

pt = pr + �, (11)

�

C
= 4x Z

ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+ 1 − Z

x
, (12)

ẏ

y
= (1 + α)

(1 − Z)

4x Z
− α

2

Ż

Z
− β

4C Z
, (13)

where the quantity � = pt − pr is the measure of anisotropy in this model and dots denote
the differentiation with respect to the variable x . The mass function (6) becomes

m(x) = 1

4C3/2

∫ x

0

√
wρ(w)dw, (14)

in terms of the new variables in (7).
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3. Generating exact solutions

To solve the systems (9)–(13), we use a similar approach that we used in [42]. However,
in this treatment we have chosen a form for the gravitational potential Z as

Z = (1 − ax)n, (15)

where a is a real constant and n is any natural number, which generalizes our previous
choice in [42]. It is noted that the case n = 2 has been studied previously [42,47], and
shown to be physically reasonable with polytropic EOS [42]. On substituting (15) in (13)
we obtain

ẏ

y
= (1 + α)

4x(1 − ax)n
− (1 + α)

4x
+ α

2

an

(1 − ax)
− β

4C(1 − ax)n
(16)

which is a linear equation in the gravitational potential y. Note that the integration of (16)
depends on the expansion of the first term of the right-hand side. Using the knowledge of
partial fraction we can establish a general expansion for this term as

1

x(1 − ax)n
= 1

x
+

n∑
i=1

a

(1 − ax)i
. (17)

It is possible to establish that the result (17) holds for all positive integers using the
principle of mathematical induction. With the help of (17), eq. (16) can be written as

ẏ

y
= (1 + α)

4

a

(1 − ax)
+ (1 + α)

4

n∑
i=2

a

(1 − ax)i
+ α

2

an

(1 − ax)

− β

4C(1 − ax)n
. (18)

For the integration of (18) we consider the following two cases.

3.1 The case n = 1

In this case (18) becomes

ẏ

y
= [(1 + 3α)aC − β]

4aC

a

(1 − ax)
. (19)

On integrating (19) we get

y = D(1 − ax)−[(1+3α)aC−β]/4aC , (20)

where D is the constant of integration. In this case the energy density becomes constant
and is useful to study a compact anisotropic sphere with negligible energy density varia-
tion along the radius r . It can be shown [39] that for suitable values of the parameters α

and β, the measure of anisotropy � vanishes and hence the corresponding line element
reduces to the familiar isotropic de Sitter metric and Einstein metric.
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3.2 The case n > 1

In this case, integrating (18) we get

y = d(1 − ax)−[1+(2n+1)α]/4

× exp

[
1 + α

4

n∑
i=2

1

(i − 1)(1 − ax)i−1

− β

4aC(n − 1)(1 − ax)n−1

]
, (21)

where d is the constant of integration.

4. Example

In this section we discuss a particular choice n = 2 in detail and show that it is physi-
cally viable to model an anisotropic dense star in the context of general relativity theory.
This choice enables us to compare the model with polytropic EOS [42]. For n = 2,
eq. (21) becomes

y = d(1 − ax)−(1+5α)/4 exp

[
aC(1 + α) − β

4aC(1 − ax)

]
. (22)

4.1 Physical quantities

For n = 2 we can generate the physical quantities from systems (9)–(13) as follows:

e2λ = 1

(1 − ax)2
, (23)

e2ν = A2d2(1 − ax)−(1+5α)/2 exp

[
aC(1 + α) − β

2aC(1 − ax)

]
, (24)

ρ = aC(6 − 5ax), (25)

pr = αρ − β, (26)

pt = pr + �, (27)

� = x

4C(1 − ax)2

{
a2C2 [

5a2x2(1 + α(2 + 5α))

− 4ax(4 + 3α(3 + 5α)) + 4(3 + α(7 + 9α))]

−2aCβ(4 + 6α − ax(3 + 5α)) + β2
}
. (28)

The solutions (23)–(28) is given in simple elementary function so that it is more
convenient to study the physical behaviour of SQS.
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The mass function (14) takes the form

m(x) = ax3/2(2 − ax)

2
√

C
. (29)

4.2 Physical analysis

In this section we briefly discuss the physical properties that have to be satisfied by the
realistic star [46] for the model generated in §4.1. The gravitational potentials are regular
at the origin since e2ν(0) = A2d2 exp[(aC(1 + α) − β)/2aC] and e2λ(0) = 1 are constants
and also (e2ν(r))′ = (e2λ(r))′ = 0 at r = 0. Moreover, the energy density and radial
pressure at the origin are positive for a > 0 and β < 6αaC . It is noted that the radial
pressure vanishes at the finite boundary

r = R = 1

aC

√
6αaC − β

5α

for the above parameter restrictions. Since dρ/dr = −10a2C2r < 0 and dpr/dr =
−10αa2C2r < 0 for all 0 < r < R, the energy density ρ and the radial pressure pr

decrease monotonically from the centre to the boundary of the star r = R. To maintain
the casuality, the speed of sound is less than the speed of light throughout the interior of
star, and we must choose α such that 0 < α < 1.

We shall now demonstrate graphically that the matter variables are well behaved
throughout the interior of the star. Figures 1–4 represent the energy density, the radial
pressure, the tangential pressure and the measure of anisotropy, respectively. To plot the
graphs we choose parameters a = 0.152, α = 1

3 and β = 0.149 with stellar boundary
set at r = 2. From figures 1 and 2 we see that both the energy density ρ and the radial
pressure pr are continuous throughout the interior and decreasing monotonically from the
centre to the boundary, a feature characteristic to linear equation of state. The degree
of anisotropy of the model is demonstrated in figures 2–4. Figure 3 illustrates that the
tangential pressure pt is continuous and well behaved in the interior region and show a
complete contrast over its behaviour to that of the radial pressure. Although the radial
and tangential pressures are equal at the centre (pr(0) = pt(0)), but in contrast to the
monotonic decrease of pr, pt increases up to a maximum of about 1.7pt(0) at around
r = 1.65 and then shows a rapid decrease and vanishes at the stellar boundary of the star
for our choice of parameter values. The measure of anisotropy � = (pt − pr) for the
model is illustrated in figure 4 and is maximum at about r = 1.7 of the radial distance
from the stellar boundary and vanishes at the centre and boundary. Although pr and pt

vanish at the surface of the star in this model, a non-vanishing surface tangential pressure
is also acceptable from a physical point of view [48]. As seen in figure 4, the measure of
anisotropy remains finite and continuous in the interior and shows a similar profile to the
relativistic dense stars modelled for quark matter with linear equation of state by Sharma
and Maharaj [38] and Mak and Harko [43]. In fact, Mak and Harko [43] show that the
anisotropic pressure distribution leads to an increase in the maximum radius and mass of
the quark star, which in the particular model is shown to be around three solar masses.
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Figure 1. Energy density.
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Figure 2. Radial pressure.

4.3 Junction condition

Interior metric matches smoothly with the Schwarzschild exterior metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

across the boundary r = R, where M is the total mass of the sphere.
From eq. (29), the total mass of the star (M) becomes

M = m(R) = (4αaC + β)(6αaC − β)3/2

50
√

5α5/2a3C3
.
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Figure 3. Tangential pressure.

The junction (matching) condition for the model generated in §4.1 becomes

(
1 − 2M

R

)
= (1 − aCR2)2, (30)

(
1 − 2M

R

)
= A2 y2(CR2). (31)

The condition (30) does not impose any restrictions on the parameters. However, the
condition (31) imposes the restriction on the parameters β:

β = αaC.
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r
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0.10

0.15

0.20

Δ

Figure 4. Measure of anisotropy.
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4.4 Stellar structure

Now we shall show that the solution obtained in §4.1 can be used to describe realistic
compact objects. In this model, the parameter a has the dimension of length−2. For
simplicity, we introduce the transformation

ã = aS2,

where S is a parameter which has the dimension of length. Under this transformation the
energy density becomes

ρ = ã

S2
(6 − 5ã x̃), (32)

where we have set C = 1 and x̃ = r2/S2. When β = αaC the mass contained within a
radius R has the form

M = 1

2

S√
ã

. (33)

It is now possible to calculate the central density and mass for particular parameter values
from (32) and (33). For example, if we set ã = 0.02, S = 1 km, for R = 7.07 km,
we obtain the central density ρ0 = 6.43497×1015 g cm−3 and the mass M = 2.39245M�.
If we set ã = 0.00592, S = 1 km, as another example, we obtain the central density
ρ0 = 1.903 × 1015 g cm−3 and the mass M = 4.3991M� for R = 13 km.

5. Discussion

We have generated solutions for anisotropic SQM with the linear EOS in spherically
symmetric static space-time. We have expressed the system of Einstein’s field equations
as a new system of differential equations using transformations and solved the system for
gravitational potential of the form Z = (1 − ax)n . The solution is possible by expanding
the general term involved in the integration of eq. (16) that can be proven by mathematical
induction. As an example, for a particular parameter n = 2, we show that the generated
anisotropic model satisfies all the physical features of a realistic star: regularity at the
origin of gravitational potential, positive definiteness of energy density and the radial
pressure at the origin, vanishing of radial pressure at some finite radius and monotonic
decrease of the energy density and the radial pressure with increasing radius. Considering
a linear equation of state for radial pressure inside the star, the tangential pressure of
the model for particular parameter values is shown to increase up to a maximum and
then decrease rapidly and vanish at the surface, thus illustrating a significant pressure
anisotropy that is quite similar to some reported pressure anisotropy of dense quark star
models with linear equation of state [38,43]. We have also shown that the models match
smoothly with the Schwarzschild exterior line element at the boundary which restricts the
bag constant in the model.

The values for mass and central densities for n = 2 were generated in previous section
for compact spheres of 7.07 km and 13.0 km radii in order to compare with some exper-
imental observations and theoretical studies. The estimated mass-to-radius ratio for both
of these radii are greater than 0.3 suggesting that the model is best to describe a SQS [49].
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Figure 5. Comparison of energy density.

A comparative study of the mass–radius relationship of the compact star SAX J1808.4-
3658 with theoretical EOS models of both neutron and strange stars gives mass-to-radius
ratio 0.3 and radii 7.07 and 6.53 km respectively [4]. Our model with n = 2 for 7.07
km radius gives a mass about 1.7 times that of SAX J1808.4-3658 and an average density
12ρnu which monotonically decreases from the highest value of 24ρnu at the centre to 4ρnu

at the surface, where ρnu = 2.7 × 1014 g cm−3 is the nuclear saturation density.
Now we shall compare the density profile of this model with that of the reported poly-

tropic model [42] for the gravitational potential Z = (1 − ax)2. At the centre in both
models, the density ρ0 = 6(ã/S2). However, the numerical values for the two models
vary because the parameter ã would be different when we impose the junction condition
and the condition for vanishing radial pressure at the boundary of the star. In polytropic
case the surface density vanishes but non-zero (ρs = β/α) with linear EOS. To illustrate
this feature geometrically, we plot the behaviour of density profiles in figure 5 for 7.07 km
radius.

Therefore, solutions generated in this linear model satisfy all major properties of a
realistic star and gives mass and densities that are physically reasonable compared to
experimental observations and be useful to model realistic SQS that are about an order of
magnitude denser than nuclear matter. Moreover, the model generated in this paper with
linear EOS that describes a quark phase gives a good comparison with the model having
the same gravitational potential but with polytropic EOS that might represent a hybrid
star which have cores composed of unconfined quarks [44,45].
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