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Abstract

We consider the general situation of a compact relativistic body with anisotropic pres-

sures in the presence of the electromagnetic field. The equation of state for the matter

distribution is linear and may be applied to strange stars with quark matter. Three

classes of new exact solutions are found to the Einstein-Maxwell system. This is

achieved by specifying a particular form for one of the gravitational potentials and

the electric field intensity. We can regain anisotropic and isotropic models from our

general class of solution. A physical analysis indicates that the charged solutions de-

scribe realistic compact spheres with anisotropic matter distribution. The equation of

state is consistent with dark energy stars and charged quark matter distributions. The

masses and central densities correspond to realistic stellar objects in the general case

when anisotropy and charge are present.
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1 Introduction

Since the pioneering paper by Bowers and Liang [1] there have been extensive investiga-

tions in the study of anisotropic relativistic matter distributions in general relativity to

include the effects of spacetime curvature. The anisotropic interior spacetime matches

to the Schwarzschild exterior model. The early work of Ruderman [2] showed that

nuclear matter may be anisotropic in density ranges of 1015 gcm−3 where nuclear inter-

actions need to be treated relativistically. Note that conventional celestial bodies are

not composed purely of perfect fluids so that radial pressures are different from tan-

gential pressures. Anisotropy can be introduced by the existence of a solid stellar core

or by the presence of a type 3A superfluid as indicated by Kippenhahn and Weigert

[3]. Different kinds of phase transitions (Sokolov [4]) or pion condensation (Sawyer

[5]) can generate anisotropy. Binney and Tremaine [6] have considered anisotropies in

spherical galaxies in the context of Newtonian gravitational theory. Herrera and Santos

[7] studied the effects of slow rotation in stars and Letelier [8] analysed the mixture

of two gases, such as ionized hydrogen and electrons, in a framework of a relativis-

tic anisotropic fluid. Weber [9] showed that strong magnetic fields serve as a vehicle

for generating anisotropic pressures inside a compact sphere. Some recent anisotropic

models for compact self-gravitating objects with strange matter include the results of

Lobo [10] and Sharma and Maharaj [11] with a barotropic equation of state. There-

fore the study of anisotropic fluid spheres in static spherically symmetric spacetimes is

important in relativistic astrophysics.

In recent years there have been several investigations of the Einstein-Maxwell sys-

tem of equations for static spherically symmetric gravitational fields usually with

isotropic pressures to include the effects of the electromagnetic field. The interior

spacetime must match at the boundary to the Reissner-Nordstrom exterior model. The

models generated can be used to describe charged relativistic bodies in strong gravi-

tational fields such as neutron stars. Many exact solutions have been given by Ivanov

[12] and Thirukkanesh and Maharaj [13] which satisfy the conditions for a physically

acceptable charged relativistic sphere. Charged spheroidal stars have been studied ex-

tensively by Komathiraj and Maharaj [14], Sharma et al [15], Patel and Koppor [16],

Tikekar and Singh [17] and Gupta and Kumar [18]. These charged spheroidal models

contain uncharged neutron stars in the relevant limit and are consequently relevant in

the description of dense astrophysical objects. We point out the particular detailed

studies of Sharma et al [19] in cold compact objects, Sharma and Mukherjee [20] anal-

ysis of strange matter and binary pulsars, and Sharma and Mukherjee [21] analysis

of quark-diquark mixtures in equilibrium in the presence of the electromagnetic field.

Charged relativistic matter is also relevant in modeling core-envelope stellar system
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as shown in the treatments of Thomas et al [22], Tikekar and Thomas [23] and Paul

and Tikekar [24] in which the stellar core is an isotropic fluid surrounded by a layer of

anisotropic fluid. Consequently the study of charged fluid spheres in static spherically

symmetric spacetimes is of significance in relativistic astrophysics.

From the above motivation it is clear that both anisotropy and the electromag-

netic field are important in astrophysical processes. However previous treatments have

largely considered either anisotropy or electromagnetic field separately. The intention

of this paper is to provide a general framework that admits the possibility of tangential

pressures with a nonvanishing electric field intensity. We believe that this approach

will allow for a richer family of solutions to the Einstein-Maxwell field equations and

possibly provide a deeper insight into the behaviour of the gravitational field. On

physical grounds we impose a barotropic equation of state which is linear, that relates

the radial pressure to the energy density and allows for the existence of strange matter.

Our general model will contain strange matter solutions found previously. In this re-

gard we mention the following recent works on strange stars. Mak and Harko [25] and

Komathiraj and Maharaj [26] found analytical models in the MIT bag model (Witten

[27]) with a strange matter equation of state in the presence of an electromagnetic field.

Sharma and Maharaj [11] generated a class of exact solutions which can be applied to

strange stars with quark matter for neutral anisotropic matter. Lobo [10] found sta-

ble dark energy stars which generalise the gravastar model governed by a dark energy

equation of state.

The objective of this treatment is to generate exact solutions to the Einstein-

Maxwell system, with linear equation of state, that may be utilised to describe a

charged anisotropic relativistic body. In Section 2, we express the Einstein-Maxwell

system as a new system of differential equations using a coordinate transformation,

and then write the system in another form which is easier to analyse. Three classes of

new exact solutions to the Einstein-Maxwell system are found in Section 3 in terms of

simple elementary functions. We show that particular uncharged anisotropic strange

stars found in the past are contained in our general family of solutions. In Section

4, we show that the solutions are physically admissible and plot the matter variables

for particular parameter values. We generate values for the mass and central density

in Section 5 for charged and uncharged matter. This analysis extends the treatment

of Sharma and Maharaj [11] to include charge, and confirms that the exact solutions

found are physically reasonable. Some concluding remarks are made in Section 6.
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2 The field equations

Our intention is to model the interior of a dense star. On physical grounds it is necessary

for the gravitational field to be static and spherically symmetric. Consequently, we

assume that the interior of a spherically symmetric star is described by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

in Schwarzschild coordinates (xa) = (t, r, θ, φ). We take the energy momentum tensor

for an anisotropic charged imperfect fluid sphere to be of the form

Tij = diag(−ρ− 1

2
E2, pr −

1

2
E2, pt +

1

2
E2, pt +

1

2
E2), (2)

where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure and

E is the electric field intensity. These quantities are measured relative to the comoving

fluid velocitry ui = e−νδi0. For the line element (1) and matter distribution (2) the

Einstein field equations can be expressed as

1

r2
[

r(1− e−2λ)
]′

= ρ+
1

2
E2, (3)

− 1

r2
(

1− e−2λ
)

+
2ν ′

r
e−2λ = pr −

1

2
E2, (4)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ − λ′

r

)

= pt +
1

2
E2, (5)

σ =
1

r2
e−λ(r2E)′, (6)

where primes denote differentiation with respect to r and σ is the proper charge density.

In the field equations (3)-(6), we are using units where the coupling constant 8πG
c4

= 1

and the speed of light c = 1. The system of equations (3)-(6) governs the behaviour of

the gravitational field for an anisotropic charged imperfect fluid. Note that the system

(3)-(6) becomes

1

r2
[

r(1− e−2λ)
]′

= ρ, (7)

− 1

r2
(

1− e−2λ
)

+
2ν ′

r
e−2λ = p, (8)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ − λ′

r

)

= p, (9)

for matter distributions with isotropic pressures (pr = pt) in the absence of charge

(E = 0).

The mass contained within a radius r of the sphere is defined as

m(r) =
1

2

∫ r

0

ω2ρ(ω)dω. (10)
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A different, but equivalent, form of the field equations is obtained if we introduce a

new independent variable x, and define functions y and Z, as follows

x = Cr2, Z(x) = e−2λ(r) and A2y2(x) = e2ν(r), (11)

which was first suggested by Durgapal and Bannerji [28]. Then the line element (1)

becomes

ds2 = −A2y2dt2 +
1

4CxZ
dx2 +

x

C
(dθ2 + sin2 θdφ2). (12)

In (11) and (12), the quantities A and C are arbitrary constants. Under the transfor-

mation (11), the system (3)-(6) becomes

1− Z

x
− 2Ż =

ρ

C
+

E2

2C
, (13)

4Z
ẏ

y
+

Z − 1

x
=

pr
C

− E2

2C
, (14)

4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż =

pt
C

+
E2

2C
, (15)

σ2

C
=

4Z

x

(

xĖ + E
)2

, (16)

where dots denote differentiation with respect to the variable x. The mass function

(10) becomes

m(x) =
1

4C3/2

∫ x

0

√
wρ(w)dw, (17)

in terms of the new variables in (11).

For a physically realistic relativistic star we expect that the matter distribution

should satisfy a barotropic equation of state pr = pr(ρ). For our purposes we assume

the linear equation of state

pr = αρ− β, (18)

where α and β are constants. Then it is possible to write the system (13)-(16) in the

simpler form

ρ

C
=

1− Z

x
− 2Ż − E2

2C
, (19)

pr = αρ− β, (20)

pt = pr +∆, (21)

∆ = 4CxZ
ÿ

y
+ 2C

[

xŻ +
4Z

(1 + α)

]

ẏ

y

+
(1 + 5α)

(1 + α)
CŻ − C(1− Z)

x
+

2β

(1 + α)
, (22)

E2

2C
=

1− Z

x
− 1

(1 + α)

[

2αŻ + 4Z
ẏ

y
+

β

C

]

, (23)

σ2

C
= 4

Z

x
(xĖ + E)2, (24)
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where the quantity ∆ = pt−pr is the measure of anisotropy in this model. In the system

(19)-(24), there are eight independent variables (ρ, pr, pt,∆, E, σ, y, Z) and only six

independent equations. This suggests that it is possible to specify two of the quantities

involved in the integration process. The resultant system will remain highly nonlinear

but it may be possible to generate exact solutions.

3 Generating exact models

We must make physically reasonable choices for any two of the independent variables

and then solve the system (19)-(24) to generate exact models. In this paper, we choose

forms for the gravitational potential Z and electric field intensity E. We make the

specific choices

Z =
1 + (a− b)x

1 + ax
, (25)

E2

C
=

k(3 + ax)

(1 + ax)2
, (26)

where a, b and k are real constants. The gravitational potential Z is regular at the origin

and well behaved in the stellar interior for a wide range of values for the parameters

a and b. The electric field intensity is continuous, bounded and a decreasing function

from the origin to the boundary of the sphere. Therefore the forms chosen in (25)-(26)

are physically reasonable. On substituting (25) and (26) in (23) we obtain

ẏ

y
=

(1 + α)b

4 [1 + (a− b)x]
+

αb

2(1 + ax) [1 + (a− b)x]

− β(1 + ax)

4C [1 + (a− b)x]
− (1 + α)k(3 + ax)

8(1 + ax) [1 + (a− b)x]
, (27)

which is a linear equation in the gravitational potential y. For the integration of

equation (27) it is convenient to consider three cases: b = 0, a = b and a 6= b.

3.1 The case b = 0

When b = 0, (27) becomes

ẏ

y
= − β

4C
− (1 + α)k(3 + ax)

8(1 + ax)2
(28)

with solution

y = D(1 + ax)
−k(1+α)

a exp

[

2k(1 + α)

a(1 + ax)
− βx

4C

]

, (29)

where D is the constant of integration. We observe that ρ = −E2

2
for this case which

we do not consider further to avoid negative energy densities.
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3.2 The case a = b

When a = b, (27) becomes

ẏ

y
=

(1 + α)a

4
+

αa

2(1 + ax)
− β(1 + ax)

4C
− (1 + α)k(3 + ax)

8(1 + ax)
. (30)

On integrating (30) we get

y = D(1 + ax)
2aα−(1+α)k

4a exp[F (x)], (31)

where

F (x) =
x

8C
[−kC(1 + α)− 2β + a(2C(1 + α)− βx)]

and D is the constant of integration. Then we can generate an exact model for the

system (19)-(24) as follows

e2λ = 1 + ax, (32)

e2ν = A2D2(1 + ax)
2aα−k(1+α)

2a exp[2F (x)], (33)

ρ

C
=

(2a− k)

2

(3 + ax)

(1 + ax)2
, (34)

pr = αρ− β, (35)

pt = pr +∆, (36)

∆ =
1

16C(1 + ax)3
{

C2
[

k2(1 + α)2x(3 + ax)2

+4a2x(3− 8α + 9α2 + a2(1 + α)2x2 + 2ax(2 + 3α+ 3α2))

−4k(12 + a3(1 + α)2x3 + a2x2(7 + 9α+ 6α2) + ax(12 + 5α+ 9α2))
]

−4Cx(1 + ax)2[(1 + α)(2a2x− 3k)− aβ(k(1 + α)− 6α− 4)]

+4β2x(1 + ax)4
}

, (37)

E2

C
=

k(3 + ax)

(1 + ax)2
, (38)

in terms of elementary functions.

The solution (32)-(38) may be used to model a charged anisotropic star with a

linear equation of state. In this case the mass function is

m(x) =
(2a− k)x3/2

4C3/2(1 + ax)
, (39)

which is similar to forms used in other investigations. The gravitational potentials and

matter variables are continuous and well behaved in the stellar interior. Note that

when k = 0 the model (32)-(38) reduces to a solution for uncharged anisotropic stars.

Equation (37) yields

∆ =
1

4C(1 + ax)3
{

C2a2x
[

3− 8α + 9α2 + a2(1 + α)2x2 + 2ax(2 + 3α+ 3α2)
]

−2Cx(1 + ax)2[(1 + α)a2x+ aβ(3α+ 2)] + β2x(1 + ax)4
}

(40)
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when k = 0 so that the model is necessarily anisotropic with ∆ 6= 0 in general even in

the simpler case of uncharged matter. Some treatments of the physical properties of

anisotropic spheres in general relativity include the investigations of Dev and Gleiser

[29, 30], Mak and Harko [31, 32], Chaisi and Maharaj [33, 34] and Maharaj and Chaisi

[35] with ∆ 6= 0.

3.3 The case a 6= b

On integrating (27) we get

y = D(1 + ax)m[1 + (a− b)x]n exp

[

−aβx

4C(a− b)

]

(41)

where D is the constant of integration, and m and n are given by

m =
2αb− (1 + α)k

4b
,

n =
1

8bC(a− b)2
[

2a2C(k(1 + α)− 2αb)− abC(5k(1 + α)− 2b(1 + 5α))

+b2(3kC(1 + α)− 2bC(1 + 3α) + 2β)
]

.

Then we can generate an exact model for the system (19)-(24) in the form

e2λ =
1 + ax

1 + (a− b)x
, (42)

e2ν = A2D2(1 + ax)2m[1 + (a− b)x]2n exp

[

−aβx

2C(a− b)

]

, (43)

ρ

C
=

(2b− k)

2

(3 + ax)

(1 + ax)2
, (44)

pr = αρ− β, (45)

pt = pr +∆, (46)

∆ =
−bC

(1 + ax)
− bC(1 + 5α)

(1 + α)(1 + ax)2
+

2β

(1 + α)

+
Cx[1 + (a− b)x]

(1 + ax)

[

4

(

a2m(m− 1)

(1 + ax)2
+

2a(a− b)mn

(1 + ax)[1 + (a− b)x]

+
(a− b)2n(n− 1)

[1 + (a− b)x]2

)

− 2aβ(a(m+ n)[1 + (a− b)x]− bn)

(a− b)C(1 + ax)[1 + (a− b)x]
+

a2β2

4C2(a− b)2

]

− 4[1 + ax(2 + (a− b)x)]− b(5 + α)x

2(a− b)(1 + α)(1 + ax)3[1 + (a− b)x]
×

[

−4b2Cn + a3x(−4C(m+ n) + βx) + a2(4C(m+ n)(2bx− 1) + β(2− bx)x)

+a(−4b2C(m+ n)x+ β + b(4Cm+ 8Cn− βx))
]

, (47)

E2

C
=

k(3 + ax)

(1 + ax)2
, (48)
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in terms of elementary functions.

Therefore we have generated a second class of solutions (42)-(48) that models a

charged anisotropic star with a linear equation of state. The mass function has the

form

m(x) =
(2b− k)x3/2

4C3/2(1 + ax)
. (49)

The form of the mass function (49) represents an energy density which is monoton-

ically decreasing in the stellar interior and remains finite at the centre x = 0. It is

physically reasonable and has been used in the past to study the properties of isotropic

fluid spheres: Matese and Whitman [36] generated equilibrium configurations in gen-

eral relativity, Finch and Skea [37] studied neutron star models and Mak and Harko

[32] analysed anisotropic relativistic stars with this form of mass function. Lobo [10]

demonstrated that (49) is consistent with stable dark energy stars which generalises

the gravastar model of Mazur and Mottola [38]. It was then shown that large stability

regions exist close to the event horizon thereby making it difficult to distinguish dark

energy stars from black holes. Sharma and Maharaj [11] found a new class of exact

solutions to Einstein equations that can be applied to strange stars with quark matter

with this mass distribution. Consequently the mass function (49) is of astrophysical

importance in the description of compact objects.

It is interesting to observe that for particular parameter values we can regain un-

charged anisotropic and isotropic models (k = 0) from our general solution (42)-(48).

We regain the following particular cases of physical interest:

3.3.1 Sharma and Maharaj model

If we set β = αρs then

pr = α(ρ− ρs),

where ρs is the density at the surface r = s. Thus we regain the equation of state of

Sharma and Maharaj [11]. Then by setting C = 1 and A2D2 = B we find that the line

element is of the form

ds2 = −B(1 + ar2)α[1 + (a− b)r2]γ exp

(

−aβr2

2(a− b)

)

dt2

+
1 + ax

1 + (a− b)x
dr2 + r2(dθ2 + sin2 θdφ2), (50)

where

γ =
5abα− 2a2α− 3b2α + ab− b2 + bβ

2(a− b)2
.

The line element (50) corresponds to the uncharged anisotropic model of Sharma and

Maharaj [11]. They showed that this solution may be used to describe compact objects

such as strange stars with a linear equation of state with quark matter.
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3.3.2 Lobo model

If we set β = 0 then

pr = αρ

and we regain the equation of state studied by Lobo [10]. Then on setting a = 2b, C = 1

and A2D2 = 1 we generate the metric

ds2 = −(1 + br2)(1−α)/2(1 + 2br2)αdt2 +

(

1 + 2br2

1 + br2

)

dr2 + r2(dθ2 + sin2 θdφ2). (51)

The line element (51) corresponds to the uncharged anisotropic model of Lobo [10].

We point out that the line element (51) serves as an interior solution with α < −1
3

which may be matched to an exterior Schwarzschild solution in a model for dark energy

stars. Lobo [10] proved that stability regions exist for dark energy stars by selecting

particular values of α in a graphical analysis.

3.3.3 Isotropic models

In general ∆ 6= 0 so that the model remains anisotropic. However for particular

parameter values we can show that ∆ = 0 in the relevant limit in the general solution

(42)-(48). If we set a = 0 and b = 1 then we obtain

m =
α

2

n =
1

4C
[β − (1 + 3α)C]

∆ =
x

4C(1− x)
[β − 3(1 + α)C][β − (1 + 3α)C]. (52)

Two different cases arise as a consequence of (52) if we set ∆ = 0.

In the first case we observe that when β = 0 and α = −1 then ∆ = 0. The equation

of state becomes pr(= pt) = −ρ. In this case the line element becomes

ds2 = −
(

1− r2

R2

)

dt2 +

(

1− r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (53)

where we have set A = D = 1 and C = 1
R2 . The metric (53) corresponds to the familiar

isotropic uncharged de Sitter model.

In the second case we see that when β = 0 and α = −1
3
then ∆ = 0. The equation

of state becomes pr(= pt) = −1
3
ρ. In this case the line element becomes

ds2 = −A2dt2 +

(

1− r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (54)

where we have set D = 1 and C = 1
R2 . The metric (54) corresponds to the well known

isotropic uncharged Einstein model.
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4 Physical analysis

The solutions found in this paper may be connected to the Einstein-Maxwell equations

for the exterior of our source. We need to match the Reissner-Nordstrom exterior

spacetime

ds2 = −
(

1− 2M

r
+

Q2

r2

)

dt2 +

(

1− 2M

r
+

Q2

r2

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

to the interior spacetime (1) across the boundary r = R. This generates the conditions

1− 2M

R
+

Q2

R2
= A2y2(CR2)

(

1− 2M

R
+

Q2

R2

)−1

=
1 + aCR2

1 + (a− b)CR2

which relates the constants a, b, A, C,D, α and β. This demonstrates that the continuity

of the metric coefficients across the boundary of the star r = R is easily satisfied as

there are sufficient number of free parameters. If there is a surface layer of charge then

the pressure may be nonzero which would place restrictions on the function ν through

the matching conditions at the boundary. However the number of free parameters

available easily satisfies the necessary conditions that arise for a particular model under

investigation.

We now briefly consider the physical behaviour of the models generated in Section

3 for the case a 6= b. From the explicit forms (42) and (43) we can easily see that

the gravitational potentials e2ν and e2λ are continuous, well behaved and nonsingular

at the origin. The energy density ρ is continuous and monotonically decreasing from

the centre to the boundary of the star, which is a necessary condition for a realistic

model. The radial pressure pr also has the same feature because ρ and pr are linked

by a linear equation of state. The tangential pressure pt is also nonsingular at the

origin and continuous for a wide range of the parameters a, b and k. To maintain the

usual casuality condition we must place the restriction that 0 ≤ α ≤ 1 if we require
dpr
dρ

≤ 1. However note that our models do allow for α < 0 in the case of anisotropic

dark energy stars. The form chosen for electric field intensity E is physically reasonable

and describes a decreasing function .

With the help of a particular example we can demonstrate the above features graph-

ically. Figures 1-4 represent the energy density, the radial pressure, the tangential

pressure and the electric field intensity, respectively. To plot the graphs we choose the

parameters a = 3, b = 2.15, α = 0.33, β = αρs = 0.198, C = 1 and k = 0.2, where ρs is

the density at the boundary r = s = 1.157. Note that our choice of α = 0.33 ensures

that both the radial pressure and the tangential pressure for the neutral sphere vanish

11



at the boundary. We observe from Figures 1-4 that the matter variables ρ, pr, pt and

E have the appropriate features to describe a compact relativistic sphere. Solid lines

represent uncharged matter and dashed lines include the effect of charge in Figures

1-3. We observe that the effect of E is to produce lower values for ρ, pr and pt when

compared to the case of uncharged matter. In Figure 5 we have plotted the measure

of anisotropy ∆ for the same parameter values used above. Note that the effect of the

electromagnetic field is to increase the magnitude of ∆ which affects the behaviour of

pt.

0.2 0.4 0.6 0.8 1.0 1.2
r

1

2

3

4

5

6

Ρ

E ¹ 0

E = 0

Figure 1: Energy density.

0.2 0.4 0.6 0.8 1.0 1.2
r

0.5

1.0

1.5

pr

E ¹ 0

E = 0

Figure 2: Radial pressure.
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0.2 0.4 0.6 0.8 1.0 1.2
r

0.5

1.0

1.5

pt

E ¹ 0

E = 0

Figure 3: Tangential pressure.

0.2 0.4 0.6 0.8 1.0 1.2
r

0.1

0.2

0.3

0.4

0.5

0.6

E2

Figure 4: Electric field intensity.

5 Stellar structure

In this section we show that the solutions generated in this paper can be used to

describe realistic compact objects. In particular we seek to compare our results with

those of Sharma and Maharaj [11] since they regain values for the stellar mass agreeable

with observations. To achieve consistency with Sharma and Maharaj [11] we introduce

the transformations

ã = aR2, b̃ = bR2, β̃ = βR2, k̃ = kR2.

Under these transformations the energy density becomes

ρ =
(2b̃− k̃)(3 + ãy)

2R2(1 + ãy)2
, (55)
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Figure 5: Measure of anisotropy.
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and the mass contained within a radius s has the form

M =
(2b̃− k̃)s3/R2

4(1 + ãs2/R2)
, (56)

where we have set C = 1 and y = r2

R2 . When k̃ = 0 (or E = 0), (55) and (56) reduce

to the expressions of Sharma and Maharaj [11]:

ρ =
b̃(3 + ãy)

R2(1 + ãy)2
, M =

b̃s3/R2

2(1 + ãs2/R2)
(57)

which gives the density ρ and mass M of an uncharged star of radius s.

If we choose ã = 53.34, b̃ = 54.34, R = 43.245 km and s = 7.07 km then we

can produce an uncharged model (k̃ = 0) with mass M = 1.433MJ and central

density ρc = 4.672 × 1015gcm−3. The corresponding value of α = 0.437 is obtained

by requiring that the anisotropy vanishes at the boundary. To simplify comparison

with Sharma and Maharaj [11] we have used the same values of ã, b̃, R and s; however

our value for α is a correction. It should be noted that these results are consistent

with the equation of state for strange matter formulated by Dey et al [39]. This has

astrophysical significance as their model has been used to describe the X-ray binary

pulsar SAX J1808.4-3658. When the charge is nonzero we set k̃ = 37.403 and then

we obtain the mass M = 0.940MJ and central density ρc = 3.064 × 1015gcm−3. The

values for M and ρc generalise the figures of Sharma and Maharaj [11] to include the

effect of the electromagnetic field. Choosing different set of values for the parameters

will produce different results as shown in Table 1. Note that the values presented in

Table 1 correspond to a star of radius s = 7.07km. The value of k̃ = 37.403 is selected,

in generating Table 1, so that the density and mass of the Sharma and Maharaj [11]

analysis is regained for uncharged matter. Furthermore, the value of k̃ = 37.403 with

E = 0 generates a star of mass 1.433MJ which is the same as the strange star model

of Dey et al [39]. With this value of k̃ we find that the star has mass 0.940MJ in

the presence of charge so that the stellar core has a lower density which represents a

weaker field. This is consistent as the effect of the electromagnetic field is repulsive.

We observe that the values for the mass in the presence of charge (E 6= 0) is always

less than the uncharged case. The central density of the charged sphere is also less

than the uncharged case. Sharma and Maharaj [11] showed that anisotropy affects the

mass and central densities of massive objects. We have shown that the inclusion of the

electromagnetic field also affects M and ρc. Both anisotropy and charge are physical

quantities that affect the range of degenerate states in our model. For the calculation

of mass and central density we have set s = 7.07 km, R = 43.245 km, k̃ = 37.403 and

ρs = 1.17119× 1015gcm−3 for the uncharged case.
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b̃ ã α ρc M ρc M

(×1015 gcm−3) (MJ) (×1015 gcm−3) (MJ)

E = 0 E = 0 E 6= 0 E 6= 0

30 23.681 0.401 2.579 1.175 0.971 0.443

40 36.346 0.400 3.439 1.298 1.831 0.691

50 48.307 0.424 4.298 1.396 2.691 0.874

54.34 53.340 0.437 4.671 1.433 3.064 0.940

60 59.788 0.457 5.158 1.477 3.550 1.017

70 70.920 0.495 6.017 1.546 4.410 1.133

80 81.786 0.537 6.877 1.606 5.269 1.231

90 92.442 0.581 7.737 1.659 6.129 1.314

100 102.929 0.627 8.596 1.705 6.989 1.386

183 186.163 1.083 15.730 1.959 14.124 1.759

Table 1: Central density and mass for different anisotropic stellar models for neutral

and charged bodies

6 Conclusion

We have found a general framework for the Einstein-Maxwell system of equations with

a linear equation of state for anisotropic matter distributions in the presence of the

electromagnetic field. Three new classes of exact solutions have been generated to this

system of nonlinear equations. We have shown that these classes of solutions satisfy the

necessary physical requirements in the description of a charged compact objects with

anisotropic matter distribution. We have demonstrated that our models yield stellar

structures with masses and densities consistent with the Dey et al [38] and Sharma and

Maharaj [11] models in the limit of vanishing charge. Therefore it is likely that our

solutions may be helpful in the gravitational description of stellar bodies such as SAX

J1808.4-3658. The solutions obtained may be useful to model the interior of charged

relativistic quark stars with anisotropic matter distribution. Our models contain the

uncharged anisotropy models of Sharma and Maharaj [11] and Lobo [10] which de-

scribe quark stars and strange matter stars. We believe that the general class of exact

solutions found in this paper may assist in more detailed studies of relativistic stellar

bodies and allows for different matter distributions because of the form of the linear

equation of state chosen.
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