

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE - 2014/2015

FIRST SEMESTER (Aug./Sept., 2016)

AM 151 - MATHEMATICA

(Proper & Repeat)

wer all questions

Time: Two hours

- (a) i. Evaluate $\int_{1}^{4} (2 3x + 5x^{2}) dx$.
 - ii. Evaluate $\lim_{x \to \infty} \frac{x^2 + 2x 3}{\sqrt{x^8 x}}$.
 - iii. Compute the first seven derivatives of $f(x) = \cos x$. What is the 200th derivative of f?
- (b) Define the function, $g(t) = t^4 + 2t^2 + 4000$ in Mathematica.
 - i. Evaluate the above function at t = 200.
 - ii. Evaluate g'(t), for t = -3, -2, 0, 10, 50.
- (c) i. Determine the solution of the following equations:

$$4a - b + 3c = 1;$$

$$2a + b + c = 0$$
;

$$a - 3b + 2c = -1.$$

ii. Simplify the given expression
$$\frac{4-\frac{2-x}{x}}{\frac{1}{1+x}}$$
.

iii. Factor
$$\sin x^2 + \tan x^2$$
.

- 2. (a) i. Plot the 3D graph of f(x,y)=3x+4y-3 and g(x,y)=10sing the color of blue and red respectively on a same axes between the $-5 \le x \le 5$ and $-2 \le y \le 2$.
 - ii. Plot the graph for $\sin x$ and $\cos x$ between the range of -2π to 2π iii. the indication as follows:

iii. Plot the graph of the function,
$$f(x) = \begin{cases} \frac{1}{x-2}, & \text{if } x \neq 2; \\ 1, & \text{if } x = 1. \end{cases}$$

(b) Consider the following lists:

$$List1 = 2, 4, 6, 8, 10, 12, 14;$$

$$List2 = z, y, x, w, v, u, t, s, 10.$$

- i. Combine the above two lists into one list such that the elements of List after all those of List2.
- ii. Add a new list element "r" in the third position of the list which you'd in part i.
- iii. Display all the elements from the List1 and List2 (without repetition).
- iv. Add a new element "m" instead of "w" from the list which you den lipart iii.

- (c) Suppose a curve C is defined by the parametric equation $x=t^2$, $y=t^3-3t$.
 - i. Plot the curve.
 - ii. Find the equations of the tangent lines to the curve at the point (3,0).
 - iii. Plot the tangent lines at the point (3,0).
- (a) Consider the sequence $\left\{ (-2)^{n-1} \ \frac{n+2}{2^n+1} \right\}_{n=1}^{\infty}$.
 - i. List the first six terms of the sequence .
 - ii. Find the sum of the first six terms of the sequence.
 - iii. Find the sum of the first n terms of the sequence.
 - iv. Determine whether the sequence converges.
- (b) Display an output as follows using Mathematica expressions and commands.

	R	R1	R2	R3
1	1	2	0	2
2	2	4	3	5
3	3	6	8	10
4	4	8	16	17
5	5	10	24	26
6	6	12	35	37
7	7	14	48	50
8	8	16	63	65
9	9	18	80	82
10	10	20	99	101

c) Let
$$A = \begin{pmatrix} 2 & 7 & -2 & 5 \\ 6 & 8 & 1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 5 \\ 4 & 0 \\ 3 & 2 \\ 1 & 3 \end{pmatrix}$.

- i. Find the determinant of matrix A and B.
- ii. Find it's inverse if it exists.