27 OCT 2017

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST YEAR EXAMINATION IN SCIENCE - 2013/2014

SECOND SEMESTER - (APRIL/MAY, 2016)

AM 104 - DIFFERENTIAL EQUATIONS

AND

FOURIER SERIES

(PROPER & REPEAT)

Answer All Questions

Time Allowed: 3 Hours

Q1. (a) State the necessary and sufficient condition for the ordinary differential equation (ODE)

$$M(x,y) dx + N(x,y) dy = 0$$
(1)

to be exact.

[10 Marks]

If

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} + N \, \mu(x)$$

then show that $e^{\int \mu(x) dx}$ is an integrating factor of the ODE (1).

[20 Marks]

Using the above result or otherwise find the general solution of the following ODE

$$x(x+y+1)\frac{dy}{dx} + y^2 + 3xy + 2y = 0.$$

[**4**0 Marks]

(b) Find the general solution of the nonlinear first-order Riccati equation given by

$$x^2 \frac{dy}{dx} + 2 - 2xy + x^2 y^2 = 0.$$

[30 Marks]

Q2. Let $D \equiv d/dx$ be a differential operator. Show that a particular integration of the ODE

$$(D-a)(D-b)y = P(x),$$

where a, b are arbitrary real constants and P(x) is an arbitrary function in its variable, is given by

$$y = e^{ax} \int e^{(b-a)x} \left(\int Pe^{-bx} dx \right) dx.$$

[40 Marks

Using the above result or otherwise, obtain the general solution of the following ODE:

- (i) $(D^2 3D + 2)y = \sin e^{-x}$;
- (ii) $(D^2 1)y = (1 + e^{-x})^{-2}$.

60 Marks

Q3. (a) Let $x = e^t$. Show that

$$x\frac{d}{dx} \equiv \mathcal{D}, \quad x^2 \frac{d^2}{dx^2} \equiv \mathcal{D}^2 - \mathcal{D},$$

and

$$x^3 \frac{d^3}{dx^3} \equiv \mathcal{D}(\mathcal{D} - 1)(\mathcal{D} - 2),$$

where
$$\mathcal{D} \equiv \frac{d}{dt}$$
.

20 Marks

Use the above results to find the general solution of the following Cauchy-Euler differential equation

$$(x^3D^3 + xD - 1)y = 3x^4,$$

where
$$D \equiv \frac{d}{dx}$$
.

[40 Marks

(b) Find the general solution of the following system of linear ODEs

$$(D^{2} - 2)x - 3y = e^{2t},$$

$$(D^{2} + 2)y + x = 0.$$

[40 Marks

- Q4. (a) Define what is meant by the point, $x = x_0$, being
 - (i) an ordinary;
 - (ii) a singular;
 - (iii) a regular singular

point of the ODE

$$y'' + p(x)y' + q(x)y = 0,$$

where the prime denotes differentiation with respect to x, and p(x) and q(x) are rational functions.

[30 Marks]

(b) (i) Find the regular singular point(s) of the ODE

$$xy'' + (x-1)y' - 2y = 0. (2)$$

(ii) Use the method of Frobenius to find the general solution of the equation (2).

[70 Marks]

Q5. (a) Solve the following system of ODEs:

(i)
$$\frac{dx}{x(2y^4 - z^4)} = \frac{dy}{y(z^4 - 2x^4)} = \frac{dz}{z(x^4 - y^4)}$$
;

(ii)
$$\frac{dx}{z^2 - 2yz - y^2} = \frac{dy}{y+z} = \frac{dz}{y-z}$$
.

[30 Marks]

(b) Write down the condition of integrability of the total differential equation

$$P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0.$$

[5 Marks]

Hence solve the following equation

$$z(2x^3 - z) dx + 2x^2yz dy + x(x+z) dz = 0.$$

[15 Marks]

(c) Find the equation of the integral surface satisfying the quasi-linear partial differential equation (PDE),

$$yp - 2xyq = 2xz$$

which contains the curve x = 0, $z = y^3$, $(1 \le y \le 2)$.

[30 Marks]

(d) Apply Charpit's method or otherwise to find the complete and the singular solution of the following nonlinear first-order PDE

$$16p^2z^2 + 9q^2z^2 + 4z^2 = 4.$$

Here,
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

[20 Marks]

Q6. (a) (i) Find the Fourier coefficients corresponding to the function

$$f(x) = \begin{cases} 2x, & 0 \le x < 3, \\ 0, & -3 < x < 0. \end{cases}$$
 Period = 6.

- (ii) Write the corresponding Fourier series.
- (iii) State where the discontinuities of f(x) are located and to what value the series converges at these discontinuities.

[40 Marks

(b) Use the finite Fourier transform to solve the following one-dimension heat equation

$$\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} = 0, \quad 0 < x < 4, \quad t > 0,$$

subject to the boundary and initial conditions

$$U(0,t) = 0$$
, $U(4,t) = 0$, $U(x,0) = 2x$.

[40 Marks]

- (c) (i) Define the gamma-function $\Gamma(x)$ and beta-function B(m,n), where m,n are positive integers.
 - (ii) Evaluate the integral

$$\int_0^1 \frac{dx}{\sqrt{1-x^4}}.$$

(You may use the following results without proof

$$B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$$

[20 Marks]
