

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2012/2013

FIRST SEMESTER (Apr./May, 2015)

AM 215 - CLASSICAL MECHANICS II

(PROPER & REPEAT)

nswer all Questions

Time: One hour

1. With the usual notations, obtain the following equations for a common catenary:

- (a) $s = c \tan \psi$;
- (b) $y = c \sec \psi$;
- (c) T = wy;
- (d) $y^2 = s^2 + c^2$.

A uniform chain is hung from two points A, B in a horizontal line. Let AB = 2a and let the tension at A be n times that at the lowest point of the chain. Show that the length of the chain is

$$\frac{2a\sqrt{n^2-1}}{ln[n+\sqrt{n^2-1}]},$$

and the sag is

$$\frac{a(n-1)}{ln[n+\sqrt{n^2-1}]}.$$

2. If S and M are shearing force and bending moment respectively at a point of uniformly loaded beam, then prove that

$$\frac{dS}{dx} = \omega$$
 and $\frac{dM}{dx} = -S$

where ω is the weight per unit length of the beam.

State the Bernoulli-Euler law of flexure.

A uniform elastic beam AB of length 4l and weight w, having flexural rigidly EI is clamped horizontally at A and is freely supported on a knife edge at the same horizontal level as A at a point C, where BC = l. The beam carries a load $\frac{15}{16}W$ concentrated at B.

- (a) Prove that the magnitude of the bending moment at A is $\frac{Wl}{4}$.
- (b) Find the reaction at C and the depth of B below A.