EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE (2003/2004)

June/July. 2005

SECOND SEMESTER

MT 102 - ANALYSIS I

Proper and Repeat

Answer all questions

Time: Three hours

- (a) i. Define the terms "Supremum" and "Infimum" of a non-empty subset of ℝ.
 - ii. State the completeness property of R.

[20]

(b) Prove that a lower bound l of a non-empty bounded below subset S of \mathbb{R} is the infimum of S if and only if for every $\epsilon > 0$, there exists $x \in S$ such that $x < l + \epsilon$.

State the corresponding result for supremum.

[30]

(c) i. Let S_1 and S_2 be two non-empty bounded above subsets of \mathbb{R} with $\operatorname{Sup} S_1 = \alpha_1$ and $\operatorname{Sup} S_2 = \alpha_2$. For any positive real numbers a and b, let the set $aS_1 + bS_2$ be defined by,

$$aS_1 + bS_2 = \{ax + by : x \in S_1, y \in S_2\}.$$

Prove the following:

A. The set $aS_1 + bS_2$ is also bounded above

B.
$$\operatorname{Sup}(aS_1 + bS_2) = a\alpha_1 + b\alpha_2$$
. [35]

ii. Find the Supremum and Infimum of the set $\left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$, if they exist.

- 2. (a) Define what is meant by each of the following terms applied to a sequence of real numbers.
 - i. bounded
 - ii. convergent
 - iii. monotone
 - (b) Prove that, a monotone sequence (x_n) of real numbers is convergent and only if it is bounded.
 - (c) Let a sequence (x_n) be given by $x_{n+1}^2 x_n a = 0$ for all $n \ge 1$ and $x_1 > l$, where a > 0 and l is the positive root of the quadratic equation $x^2 x a = 0$. Prove that
 - i. $x_n > l$ for all $n \in \mathbb{N}$
 - ii. (x_n) is a strictly decreasing sequence. Deduce that (x_n) converges and find its limit.
 - 3. (a) i. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. What is meant by the function f^{l} a limit $l \in \mathbb{R}$ at a point "a" $(\in \mathbb{R})$.
 - ii. Show that if $\lim_{x\to a} f(x) = l$, then $\lim_{x\to a} |f(x)| = |l|$. Is the converse of this result true? Justify your answer.
- (b) i. Let f: A(⊆ ℝ) → ℝ, prove that lim f(x) = l₁ if and only if forest sequence (xn) in A with xn → a as n → ∞ such that xn > a ∀n∈ we have f(xn) → l₁ as n → ∞.
 State the corresponding result for lim f(x) = l₂.
 Hence write the condition for the existence of lim f(x) = l.
 - ii. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \frac{1}{e^{\frac{1}{x}} + 1} \ \forall x \in \mathbb{R}$. Prove that $\lim_{x \to 0} g(x)$ does not exist.

- 4. (a) i. Write the (ϵ, δ) definition of the statement that $f : \mathbb{R} \to \mathbb{R}$ is University. So continuous at a point "a" $(\in \mathbb{R})$.
 - ii. Show that, if f is continuous at 'a' and f(a) < 0 then there exists a $\delta > 0$ such that 3f(a) < 2f(x) < f(a) for all x satisfying $|x a| < \delta$. [40]
 - (b) i. If f: [a, b](⊆ ℝ) → ℝ is continuous on [a, b] then prove that it is bounded on [a, b].
 Is the converse part true? Justify your answer.

Discuss the result, if the domain of f, [a, b] is changed to (a, b). [40]

ii. State the "Intermediate value" theorem.

Discuss the continuity of the function $f: \mathbb{R} \to \mathbb{R}$ on the interval [0, 2] defined by

 $f(x) = \begin{cases} 4 & \text{if } x \ge 1 \\ 2 & \text{if } x < 1. \end{cases}$

[20]

(Any results that used without proof should be clearly stated)

5. (a) State the Rolle's theorem and use it to prove the "Mean value" theorem. If the function $f: \mathbb{R} \to \mathbb{R}$ is continuous on [a.b], differentiable on (a,b) and $f'(x) = 0 \ \forall x \in [a,b]$, prove that f is a constant function on [a,b].

[50]

(b) i. Let a < b < c and suppose that $f: (a,c) \to \mathbb{R}$ is differentiable. Let f'(b) > 0. Prove that if there exists $\delta > 0$ such that $0 < |x-b| < \delta$ then $\{f(x) - f(b)\}$ and (x-b) have the same sign. Hence show that f(x) > f(b) if $b < x < b + \delta$ and f(x) < f(b), if $b - \delta < x < b$.

- ii. Let a < b < c, $f:(a,c) \to \mathbb{R}$ be twice differentiable, f'(b) = 0 and f''(b) > 0. Show that if there if exists a $\delta > 0$ such that $b < x < b + \delta$, then f'(x) > 0 and hence that for the same δ , if $b < x < b + \delta$, then f(x) > f(b).
- (a) Suppose that both real-valued functions f and g are continuous on [a,b] differentiable on (a, b) and g'(x) ≠ 0 ∀ x ∈ (a, b).
 Prove that, for some c ∈ (a, b),

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

If
$$f(d) = g(d) = 0$$
 for some $d \in (a, b)$, deduce that $\lim_{x \to d} \frac{f'(x)}{g'(x)} = \lim_{x \to d} \frac{f(x)}{g'(x)}$

(b) Evaluate the following limits

i.
$$\lim_{x \to 0} \left(\frac{\sqrt{1+x} - \frac{x}{2} - 1}{x^2} \right)$$

ii.
$$\lim_{x \to 0} \left(\frac{\sqrt{1 + x^2} - 1}{x \sin x} \right)$$

iii.
$$\lim_{x \to \infty} x \log \left(1 + \frac{1}{x} \right)$$
.