EASTERN UNIVERSITY, SRI LANKA SPECIAL DEGREE EXAMINATION IN MATHEMATICS (2004/2005)

MARCH/APRIL, 2007

PART I

MT 406 - APPROXIMATION THEORY

Time: 3 Hours

Maximum Marks: 600

Answer ALL Questions

- I. (a) If K is a closed convex subset of Rⁿ, then show that K possesses a unique point of minimum norm.
 - (b) Show, if X is a uniformly convex Banach space and K ⊂ X is a closed convex set, that each f∈ X has a unique best approximation p* from K.
 - (c) Let X be a strictly convex normed space and M⊂X be a finite dimensional subspace. Prove [25+40+35=100]that each $f \in X$ has a unique best approximation from M.
- II. (a) Let $f \in C[a,b]$ and let $g_1, ..., g_n \in C[a,b]$ with $g_1, ..., g_n$ linearly independent. Define $x = (g_1(x), ..., g_n(x)), x \in [a,b]$. Prove that for $P = \Sigma c_i g_i$ to be a best approximation, that is $c_1, c_2, ..., c_n$ to be such that the residual $r = f - \sum_{i=1}^n c_i g_i$ has minimum norm, it is necessary and sufficient that $\underline{0} \in \text{Co}\{r(x)\hat{x} : x \in [a,b] \text{ and } |r(x)| = ||r||\}.$
 - (b) Let $\{g_1, g_2, ..., g_n\}$ form a Chebyshev system on [a,b]. Let $a \le x_0 < x_1 < x_2 < < x_n < b$ and $\lambda_0, \lambda_1, ..., \lambda_n \neq 0$. Prove that in order that $\underline{0} \in \text{Co}\{\lambda_0 \hat{x}_0, \lambda_1 \hat{x}_1, ..., \lambda_n \hat{x}_n\}$, it is necessary and sufficient that $\lambda_j\,\lambda_{j+1}<0$, $j=0,1,2,.....,\,n-1.$
- III. (a) Prove: $\min_{c_1, c_2, \dots, c_{n-1}} \int_0^{\pi} \left| x \sum_{k=1}^{n-1} c_k \sin(kx) \right| dx = \pi^2/(2n).$
 - (b) Define the modulus of continuity of $f \in C_{2\pi}$ and, for $f \in C_{2\pi}$, prove that $\mathcal{E}_{n}[f] \leq (3/2) \omega(f, \frac{\pi}{n+1}), n = 1,2,3,....$
 - (c) Let $f \in C_{2\pi}$ and $0 < \alpha < 1$. Prove that f satisfies the condition that, for some B > 0, $|f(x)-f(y)| \leq B|x-y|^{\alpha}$, for all $x,y \in [0,2\pi]$ if there exists $A \geq 0$ such that [30 + 25 + 45 = 100] $\mathcal{E}_n[f] \leq An^{-\alpha}$, $n \geq 1$.
 - IV. (a) Let $f \in C[-1,1]$ and let k be a positive integer and let $0 \le \alpha \le 1$. Assume that, for some A>0, $\delta_n[f] \leq An^{k-\alpha}$, $n \geq 1$. Show that $f^{(k)}$ exists and is continuous in (-1,1) and, given $0<\delta<1,$ there exists B>0 such that $|f^{(k)}(x)-f^{(k)}(y)|\leq B|x-y|^\alpha$, for all $x,y \in [-1+\delta, 1-\delta].$
 - (b) Let X be the space of continuous functions $f: [0,1] \to \mathbb{R}$ with inner product $(f,g) = \int_{-\infty}^{\infty} f(x)g(x)dx$. Let M be a finite dimensional subspace of X with basis $\{x^{\alpha_1}, x^{\alpha_2},, x^{\alpha_n}\}$. $\alpha_1, \alpha_2,, \alpha_n \ge 0$, distinct. Prove that the distance from $x^m \ (m \ge 0)$

to M is d =
$$\frac{1}{\sqrt{2m+1}} \prod_{j=1}^{n} \left| \frac{m - \alpha_j}{m + \alpha_j + 1} \right|.$$

- (c) Let X be the inner product space of continuous functions f: $[0,1] \to \mathbb{R}$ with inner product $(f,g) = \int_0^1 f(x)g(x)dx$, and norm induced by the inner product. Let $\alpha_1,\alpha_2,\alpha_3,\ldots$ be distinct non-negative numbers. Show that $\mathscr{A} = \{x^{\alpha_1}, x^{\alpha_2},\ldots\}$ is fundamental in X if and only if $\sum_{j=1}^{\infty} 1/\alpha_j = \infty$. [35 + 25 + 40 = 100]
- V. (a) Let $\lambda = \int_0^\infty \log \left| \frac{t-1}{t+1} \right| \frac{dt}{t}$. Show, for all $b \ge a \ge 0$ and $z \in C$, that $\int_a^b \log \left| \frac{t+z}{t-z} \right| \frac{dt}{t} \ge \lambda$.
 - (b) Let $f(x) = |x|, x \in [-1,1]$. Then prove that there exists C_1 such that $\frac{1}{2} e^{C_1 \sqrt{x}} \le r_n(f) \le 8e^{-\sqrt{x}/5}$, $n \ge 36$. [50 + 50 = 100]
- VI. (a) Let r > 1 and f be analytic inside the ellipse $\mathcal{E}_r = \{z = \varphi(\omega) = (1/2)(\omega + 1/\omega) : |\omega| = r\}$. For $n \ge 1$, let P_n be the Lagrange interpolation polynomial of deg $\le n 1$ to f at $x_{1n}, ..., x_{nn}$, the zeros of T_n so that $P_n(x_{jn}) = f(x_{jn})$, $1 \le j \le n$. Let 1 < s < r. Then prove that there exists C > 0 such that $\|f P_n\|_{r=1,1} \le C/s^n$, $n \ge 1$.
 - (b) If P is a polynomial of deg \leq n, show that $|P(\omega)| \leq |\omega|^n \max_{|t|=1} |P(t)|, |\omega| \geq 1$.
 - (c) Let $f \in C[-1,1]$ and assume that, for some r > 1, $\limsup_{n \to \infty} E_n[f]^{1/n} \le 1/r$. Show that f is the restriction to [-1,1] of a function analytic inside \mathcal{E}_r . [30 + 25 + 45(20 + 25) = 100]