EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE (1996/97) To Iniversity

(June/August'2004)

EXTERNAL DEGREE

EXMT 201 - VECTOR SPACES AND MATRICES

Answer only four questions

Time: Two hours

Q1. (a) Define what is meant by

- (i) a vector space; which is a section of the control of the contr
- (ii) subspace of a vector space.

Let $\mathbb{Q}(\sqrt{2}) = \{x + y\sqrt{2} : x, y \in \mathbb{Q}\}$. The operations \oplus , \odot on $\mathbb{Q}(\sqrt{2})$ are defined as follows:

$$(x_1 + y_1\sqrt{2}) \oplus (x_2 + y_2\sqrt{2}) = (x_1 + x_2) + (y_1 + y_2)\sqrt{2},$$

$$\alpha \odot (x_1 + y_1\sqrt{2}) = \alpha x_1 + \alpha y_1\sqrt{2}, \quad \forall \ \alpha, x_1, x_2, y_1, y_2 \in \mathbb{Q}.$$

Show that $(\mathbb{Q}(\sqrt{2}), \oplus, \odot)$ forms a vector space over \mathbb{Q} .

- (b) Let W_1 and W_2 be two subspaces of a vector space V over a field F and let A_1 and A_2 be non-empty subsets of V. Show that
 - (i) $W_1 + W_2$ is the smallest subspace containing both W_1 and W_2 ;
 - (ii) if A_1 spans W_1 and A_2 spans W_2 then $A_1 \cup A_2$ spans $W_1 + W_2$.

- (c) Which of the following sets are subspaces of \mathbb{R}^3 ? In each case justify your answer.
 - (i) $W_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$
 - (ii) $W_2 = \{(x, y, z) \in \mathbb{R}^3 : x + y^2 = 0\}.$
- Q2. (a) Define the following:
 - (i) A linearly independent set of vectors;
 - (ii) A basis for a vector space;
 - (iii) Dimension of a vector space.
 - (b) Let V be an n- dimensional vector space.

Prove the following:

- (i) A linearly independent set of vectors of V with n elements is a basis for V;
- (ii) Any linearly independent set of vectors of V may be extended as a basis for V;
- (iii) If L is a subspace of V, then there exists a subspace M of V such that $V = L \oplus M$.
- (c) Extend the subset $\{(1, -2, 5, -3), (0, 7, -9, 2)\}$ to a basis for \mathbb{R}^4 .
- Q3. (a) Define
 - (i) Range space R(T);
 - (ii) Null space N(T) of a linear transformation T from a vector space V into another vector space W.

Find R(T), N(T) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$T(x, y, z) = (x + 2y + 3z, x - y + z, x + 5y + 5z) \ \forall (x, y, z) \in \mathbb{R}^3.$$

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y,z) = (x, x+y, y-z) and let $B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $B_2 = \{(1,1,0), (-1,1,0), (0,0,1)\}$ be bases for \mathbb{R}^3 . Find
 - (i) The matrix representation of T with respect to the basis B_1 ;
 - (ii) The matrix representation of T with respect to the basis B_2 by using the transition matrix;
 - (iii) The matrix representation of T with respect to the basis B_2 directly.
- . (a) Define the following terms
 - (i) Rank of a matrix;
 - (ii) Echelon form of a matrix;
 - (iii) Row reduced echelon form of a matrix.
 - (b) Let A be an $m \times n$ matrix. Prove that
 - (i) Row rank of A is equal to column rank of A;
 - (ii) If B is an $m \times n$ matrix obtained by performing an elementary row operation on A, then r(A) = r(B).
 - (c) Find the rank of the matrix

$$\begin{pmatrix} 1 & 3 & -2 & 5 & 4 \\ 1 & 4 & 1 & 3 & 5 \\ 1 & 4 & 2 & 4 & 3 \\ 2 & 7 & -3 & 6 & 13 \end{pmatrix}.$$

(d) Find the row reduced echelon form of the matrix

$$\begin{pmatrix} -1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{pmatrix}$$

- Q5. (a) Define the following terms as applied to an $n \times n$ matrix $A = (a_{ij})$
 - (i) Cofactor A_{ij} of an element a_{ij} ;
 - (ii) Adjoint of A.

Prove that

$$A \cdot (adjA) = (adjA) \cdot A = detA \cdot I$$

where I is the $n \times n$ identity matrix.

- (b) If A and B are two $n \times n$ non-singular matrices, then prove that
 - (i) $adj(\alpha A) = \alpha^{n-1} \cdot adjA$ for every real number α ,
 - (ii) adj(AB) = (adjB)(adjA);
 - (iii) $adj(A^{-1}) = (adjA)^{-1}$;
 - (iv) $adj(adjA) = (detA)^{n-2}A;$
 - (v) $adj(adj(adjA)) = (detA)^{n^2 3n + 3}A^{-1}$.
- (c) Find the inverse of the matrix

$$\left(egin{array}{ccc} 1 & 2 & -2 \ -1 & 3 & 0 \ 0 & -2 & 1 \ \end{array}
ight).$$

Q6. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.

Reduce the augmented matrix of the following system of linear equations to its row reduced echelon form and hence determine the values of a such that the system has

- (i) A unique solution;
- (ii) No solution;
- (iii) More than one solution.

$$x + y - z = 1$$
$$2x + 3y + az = 3$$
$$x + ay + 3z = 2.$$

(b) State Crammer's rule for 3 × 3 matrix and use it to solve

$$x + 2y + 3z = 10$$
$$2x - 3y + z = 1$$
$$3x + y - 2z = 9.$$

(c) Prove that the system,

$$x + 2y - 3z = -1$$
$$3x - y + 2z = 7$$
$$5x + 3y - 4z = 2$$

is inconsistent.